RWSENodeEncoder, KER_DIM_PE(lrgb文件中的encoders文件中的kernel.py)
该代码实现了一个基于核的节点编码器 KernelPENodeEncoder
,用于在图神经网络中将特定的核函数编码(例如随机游走结构编码 RWSE)与节点特征相结合。通过将预先计算的核统计信息(如 RWSE 等)与原始节点特征结合,该编码器可以帮助模型捕捉图中节点的结构信息。该代码还定义了一个派生类 RWSENodeEncoder
,这是一个具体实现,用于对节点执行随机游走结构编码。
编码器允许使用不同的模型(例如线性模型或 MLP)对核统计信息进行处理,并且支持根据需要对节点特征进行线性扩展。最终,节点特征和核特征被拼接成一个完整的节点嵌入。
from lrgb.encoders.kernel import RWSENodeEncoder, KER_DIM_PE
import torch
import torch.nn as nnKER_DIM_PE = 28
NUM_RW_STEPS = 20
MODEL = 'Linear'
LAYERS = 3
RAW_NORM_TYPE = 'BatchNorm'
PASS_AS_VAR = Falseclass KernelPENodeEncoder(torch.nn.Module):"""Configurable kernel-based Positional Encoding node encoder.The choice of which kernel-based statistics to use is configurable throughsetting of `kernel_type`. Based on this, the appropriate config is selected,and also the appropriate variable with precomputed kernel stats is thenselected from PyG Data graphs in `forward` function.E.g., supported are 'RWSE', 'HKdiagSE', 'ElstaticSE'.PE of size `dim_pe` will get appended to each node feature vector.If `expand_x` set True, original node features will be first linearlyprojected to (dim_emb - dim_pe) size and the concatenated with PE.Args:dim_emb: Size of final node embeddingexpand_x: Expand node features `x` from dim_in to (dim_emb - dim_pe)"""kernel_type = None # Instantiated type of the KernelPE, e.g. RWSEdef __init__(self, dim_in, dim_emb, expand_x=True):super().__init__()if self.kernel_type is None:raise ValueError(f"{self.__class__.__name__} has to be "f"preconfigured by setting 'kernel_type' class"f"variable before calling the constructor.")dim_pe = KER_DIM_PE # Size of the kernel-based PE embeddingnum_rw_steps = NUM_RW_STEPSmodel_type = MODEL.lower() # Encoder NN model type for PEsn_layers = LAYERS # Num. layers in PE encoder modelnorm_type = RAW_NORM_TYPE.lower() # Raw PE normalization layer typeself.pass_as_var = PASS_AS_VAR # Pass PE also as a separate variableif dim_emb - dim_pe < 0: # formerly 1, but you could have zero feature sizeraise ValueError(f"PE dim size {dim_pe} is too large for "f"desired embedding size of {dim_emb}.")if expand_x and dim_emb - dim_pe > 0:self.linear_x = nn.Linear(dim_in, dim_emb - dim_pe)self.expand_x = expand_x and dim_emb - dim_pe > 0if norm_type == 'batchnorm':self.raw_norm = nn.BatchNorm1d(num_rw_steps)else:self.raw_norm = Noneactivation = nn.ReLU # register.act_dict[cfg.gnn.act]if model_type == 'mlp':layers = []if n_layers == 1:layers.append(nn.Linear(num_rw_steps, dim_pe))layers.append(activation())else:layers.append(nn.Linear(num_rw_steps, 2 * dim_pe))layers.append(activation())for _ in range(n_layers - 2):layers.append(nn.Linear(2 * dim_pe, 2 * dim_pe))layers.append(activation())layers.append(nn.Linear(2 * dim_pe, dim_pe))layers.append(activation())self.pe_encoder = nn.Sequential(*layers)elif model_type == 'linear':self.pe_encoder = nn.Linear(num_rw_steps, dim_pe)else:raise ValueError(f"{self.__class__.__name__}: Does not support "f"'{model_type}' e
相关文章:
RWSENodeEncoder, KER_DIM_PE(lrgb文件中的encoders文件中的kernel.py)
该代码实现了一个基于核的节点编码器 KernelPENodeEncoder,用于在图神经网络中将特定的核函数编码(例如随机游走结构编码 RWSE)与节点特征相结合。通过将预先计算的核统计信息(如 RWSE 等)与原始节点特征结合,该编码器可以帮助模型捕捉图中节点的结构信息。该代码还定义了…...
技术文档:基于微信朋友圈的自动点赞工具开发
概述 该工具是一款基于 Windows 平台的自动化操作工具,通过模拟人工点击,实现微信朋友圈的自动点赞。主要适用于需频繁维护客户关系的用户群体,避免手动重复操作,提高用户的互动效率。 官方地址: aisisoft.top 一、开发背景与技术…...

kubernetes_pods资源清单及常用命令
示例: apiVersion: v1 kind: Pod metadata:name: nginx-podnamespace: defaultlabels:app: nginx spec:containers:- name: nginx-containerimage: nginx:1.21ports:- containerPort: 80多个容器运行示例 apiVersion: v1 kind: Pod metadata:name: linux85-nginx-…...

科目二侧方位停车全流程
科目二侧方位停车是驾考中的重要项目,主要评估驾驶员将车辆准确停放在道路右侧停车位的能力。以下是对科目二侧方位停车的详细解析: 请点击输入图片描述(最多18字) 一、考试要求 车辆需在库前右侧稳定停车,随后一次性…...

2024源鲁杯CTF网络安全技能大赛题解-Round2
排名 欢迎关注公众号【Real返璞归真】不定时更新网络安全相关技术文章: 公众号回复【2024源鲁杯】获取全部Writeup(pdf版)和附件下载地址。(Round1-Round3) Misc Trace 只能说题出的太恶心了,首先获得一…...
10.24学习
1.const 在编程中, const 关键字通常用来定义一个常量。常量是程序运行期间其值不能被改变的变量。使用 const 可以提高代码的可读性和可靠性,因为它可以防止程序中意外修改这些值。 不同编程语言中 const 的用法可能略有不同,以下是一…...

社交媒体与客户服务:新时代的沟通桥梁
在数字化时代,社交媒体已成为人们日常生活中不可或缺的一部分,它不仅改变了人们的沟通方式,也深刻影响着企业的客户服务模式。从传统的电话、邮件到如今的社交媒体平台,客户服务的渠道正在经历一场前所未有的变革。社交媒体以其即…...
设置虚拟机与windows间的共享文件夹
在 VMware Workstation 或 VMware Fusion 中设置共享文件夹的具体步骤如下: 1. 启用共享文件夹 对于 VMware Workstation 打开 VMware Workstation: 启动 VMware Workstation,找到你要设置共享文件夹的虚拟机。 设置虚拟机: 选…...

微信小程序性能优化 ==== 合理使用 setData 纯数据字段
目录 1. setData 的流程 2. 数据通信 3. 使用建议 3.1 data 应只包括渲染相关的数据 3.2 控制 setData 的频率 3.3 选择合适的 setData 范围 3.4 setData 应只传发生变化的数据 3.5 控制后台态页面的 setData 纯数据字段 组件数据中的纯数据字段 组件属性中的纯数据…...

【加密系统】华企盾DSC服务台提示:请升级服务器,否则可能导致客户端退回到旧服务器的版本
华企盾DSC服务台提示:请升级服务器,否则可能导致客户端退回到旧服务器的版本 产生的原因:控制台版本比服务器高导致控制台出现报错 解决方案 方法:将控制台回退到原来的使用版本,在控制台负载均衡查看连接该服务器各个…...
直连南非,服务全球,司库直联再进一步
yonyou 在全球化经济背景下,中国企业不断加快“走出去”的步伐,寻求更广阔的发展空间。作为非洲大陆经济最发达的国家之一,南非以其丰富的自然资源、完善的金融体系和多元化的市场,成为中国企业海外投资与合作的热门目的地。 作为…...

【spring】从spring是如何避免并发下获取不完整的bean引发的思考 什么是双重检查锁 什么是java内存模型
本文将通过简述spring是如何避免并发下获取不完整的bean,延伸出双重检查锁、volatile、JMM的概念,将这些知识点都串联起来; 若发现错误,非常欢迎在评论区指出;csdn博主:孟秋与你 文章目录 双重检查锁(Doubl…...

【计算机网络一】网络学习前置知识
目录 网络中必备概念 1.什么是局域网与广域网? 2.什么是IP地址 3.什么是端口号 4.什么是协议 5.OSI七层模型 6.TCP/IP四层模型 网络中必备概念 本篇文章旨在分享一些计算机网络中的常见概念,对于初学者或者准备学习计算机网络的人会有帮助。 1.什么…...

nuScenes数据集使用的相机的外参和内参
因为需要用不同数据集测试对比效果,而一般的模型代码里实现的检测结果可视化都是使用open3d的Visualizer在点云上画的3d框,展示出来的可视化效果很差,可能是偷懒,没有实现将检测结果投影到各相机的图像上,所以检测效果…...

数据结构与算法:贪心算法与应用场景
目录 11.1 贪心算法的原理 11.2 经典贪心问题 11.3 贪心算法在图中的应用 11.4 贪心算法的优化与扩展 总结 数据结构与算法:贪心算法与应用场景 贪心算法是一种通过选择当前最佳解来构造整体最优解的算法策略。贪心算法在很多实际问题中都取得了良好的效果&am…...
音频编解码器音频文件格式
0 Preface/Foreword 1 音频编解码器 算法压缩越高,那么音频延迟越大,音频效果越好。 1.1 SBC SBC: sub-band coding,自带编码 A2DP强制规定使用的audio编解码器。 在音视频中,为了增加用户体验,规避视频和音频的不…...
FreeSWITCH JSON API
仅举几例: fs_cli -x json {"command" : "status", "data" : ""} fs_cli -x json {"command" : "sofia.status", "data" : ""} fs_cli -x json {"command" : "…...

学习docker第三弹------Docker镜像以及推送拉取镜像到阿里云公有仓库和私有仓库
docker目录 1 Docker镜像dockers镜像的进一步理解 2 Docker镜像commit操作实例案例内容是ubuntu安装vim 3 将本地镜像推送至阿里云4 将阿里云镜像下载到本地仓库5 后记 1 Docker镜像 镜像,是docker的三件套之一(镜像、容器、仓库)࿰…...

一文掌握Kubernates核心组件,构建智能容器管理集群
1.Kubernates简要概述 Kubernates(常称为K8s,因省略了“ubernate”中的8个字符)是Google开源的容器编排平台,专为简化和自动化应用服务的部署、扩展和管理而设计。它将应用与底层的服务器抽象开来,提供了自动化的机制…...
正则表达式快速入门
正则表达式是由一系列元字符(Meta-characters)组成的模式,用于定义搜索或替换文本的规则。元字符具有特殊含义,用于指定搜索模式的结构。以下是一些常用的正则表达式元字符及其功能: 字符匹配符 符号含义.匹配除 \r\…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
ThreadLocal 源码
ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...

高分辨率图像合成归一化流扩展
大家读完觉得有帮助记得关注和点赞!!! 1 摘要 我们提出了STARFlow,一种基于归一化流的可扩展生成模型,它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流(TARFlow&am…...

高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。
2024 年,高端封装市场规模为 80 亿美元,预计到 2030 年将超过 280 亿美元,2024-2030 年复合年增长率为 23%。 细分到各个终端市场,最大的高端性能封装市场是“电信和基础设施”,2024 年该市场创造了超过 67% 的收入。…...