利用前向勾子获取神经网络中间层的输出并将其进行保存(示例详解)
代码示例:
# 激活字典,用于保存每次的中间特征
activation = {}# 将 forward_hook 函数定义在 upsample_v2 外部
def forward_hook(name):def hook(module, input, output):activation[name] = output.detach()return hookdef upsample_v2(in_channels, out_channels, upscale, kernel_size=3):layers = []# Define mid channel stages (three times reduction)mid_channels = [256, 128, 64] # 512 32 32 -> 256 64 64 -> 128 128 128 -> 64 256 256 -> 2 256 256scale_factor_per_step = upscale ** (1/3) # Calculate the scaling for each stepcurrent_in_channels = in_channels# Upsample and reduce channels in 3 stepsfor step, mid_channel in enumerate(mid_channels):# Conv layer to reduce number of channelsconv = nn.Conv2d(current_in_channels, mid_channel, kernel_size=kernel_size, padding=1, bias=False)nn.init.kaiming_normal_(conv.weight.data, nonlinearity='relu')layers.append(conv)# ReLU activationrelu = nn.ReLU()layers.append(relu)# Upsampling layerup = nn.Upsample(scale_factor=scale_factor_per_step, mode='bilinear', align_corners=True)layers.append(up)layers[-1].register_forward_hook(forward_hook(f'step_{step}'))# Update current in_channels for the next layercurrent_in_channels = mid_channelconv = nn.Conv2d(current_in_channels, out_channels, kernel_size=kernel_size, padding=1, bias=False)nn.init.kaiming_normal_(conv.weight.data, nonlinearity='relu')layers.append(conv)return nn.Sequential(*layers)
def forward_hook(name):def hook(module, input, output):activation[name] = output.detach()return hook
forward_hook布置了抓取函数。其中,module代表你下面勾的那一层,input代表那一层的输入,output定义那一层的输出,我们常常只使用output。
layers[-1].register_forward_hook(forward_hook(f'step_{step}'))
这里定义了我需要捕获的那一层,layers[-1]代表我要捕获当前layers的最后一层,即上采用层,由于循环了三次,所以最后勾取的应当是三份中间层输出。
相关文章:
利用前向勾子获取神经网络中间层的输出并将其进行保存(示例详解)
代码示例: # 激活字典,用于保存每次的中间特征 activation {}# 将 forward_hook 函数定义在 upsample_v2 外部 def forward_hook(name):def hook(module, input, output):activation[name] output.detach()return hookdef upsample_v2(in_channels, o…...
CTF-RE 从0到N: S盒
S盒(Substitution Box) 是密码学中的一种替换表,用于对输入数据进行非线性变换,以增加加密过程的复杂性。它主要用于对称加密算法中(例如AES、DES),作为加密轮次的一部分,对输入字节…...
MT-Pref数据集:包含18种语言的18k实例,涵盖多个领域。实验表明它能有效提升Tower模型在WMT23和FLORES基准测试中的翻译质量。
2024-10-10,由电信研究所、里斯本大学等联合创建MT-Pref数据集,它包含18种语言方向的18k实例,覆盖了2022年后的多个领域文本。通过在WMT23和FLORES基准测试上的实验,我们展示了使用MT-Pref数据集对Tower模型进行对齐可以显著提高翻…...
【C++ 真题】B2099 矩阵交换行
矩阵交换行 题目描述 给定一个 5 5 5 \times 5 55 的矩阵(数学上,一个 r c r \times c rc 的矩阵是一个由 r r r 行 c c c 列元素排列成的矩形阵列),将第 n n n 行和第 m m m 行交换,输出交换后的结果。 输入格式 输入共 6 6 6 …...
AAPL: Adding Attributes to Prompt Learning for Vision-Language Models
文章汇总 当前的问题 1.元标记未能捕获分类的关键语义特征 如下图(a)所示, π \pi π在类聚类方面没有显示出很大的差异,这表明元标记 π \pi π未能捕获分类的关键语义特征。我们进行简单的数据增强后,如图(b)所示,效果也是如…...
MySQLDBA修炼之道-开发篇(一)
三、开发基础 1. 数据模型 1.1 关系数据模型介绍 关于NULL 如果某个字段的值是未知的或未定义的,数据库会提供一个特殊的值NULL来表示。NULL值很特殊,在关系数据库中应该小心处理。例如查询语句“select*from employee where 绩效得分<85 or>绩…...
Spring MVC 知识点全解析
Spring MVC 知识点全解析 Spring MVC 是一个基于 Java 的请求驱动的 Web 框架,属于 Spring 框架的一部分,广泛用于构建企业级 Web 应用程序。本文将详细阐述 Spring MVC 的核心知识点,包括其工作原理、关键组件、配置、请求处理、数据绑定、…...
python 基于FastAPI实现一个简易的在线用户统计 服务
简易在线用户统计服务 概述 这是一个基于Python的FastAPI框架实现的服务,用于统计客户端的心跳信息,并据此维护在线用户列表以及记录活跃用户数。 功能特性 心跳接收:接受来自客户端的心跳包,以更新客户端的状态。在线用户统计…...
glibc中xdr的一个bug
本人在64位linux服务器上(centos7),发现xdr_u_long这个函数有个bug,就是数字的范围如果超过unsigned int的最大值(4294967295)时,xdr_u_long失败。 这个场景主要用在unix时间戳上面,比如一款软件,设置有效期为100年。…...
Android Framework定制sim卡插入解锁pin码的界面
文章目录 手机设置SIM卡pin码一、安卓手机二、苹果手机 Android Framework中SIM卡pin码代码定位pin码提示文本位置定位pin码java代码位置 定制pin码framework窗口数字按钮 手机设置SIM卡pin码 设置 SIM 卡 PIN 码可以提高手机的安全性,防止他人在未经授权的情况下使…...
cc2530 Basic RF 讲解 和点灯讲解(1_1)
1. Basic RF 概述 Basic RF 是 TI 提供的一套简化版的无线通信协议栈,旨在帮助开发者快速搭建无线通信系统。它基于 IEEE 802.15.4 标准的数据包收发,但只用于演示无线设备数据传输的基本方法,不包含完整功能的协议。Basic RF 的功能限制包括…...
Android H5页面性能分析策略
文章目录 引言一、拦截资源加载请求以优化性能二、通过JavaScript代码监控资源下载速度三、使用vConsole进行前端性能调试四、使用Chrome DevTools调试Android端五、通过抓包分析优化网络性能六、总结 引言 在移动应用开发中,H5页面的性能直接影响到用户体验。本文…...
【前端面试】Typescript
Typescript面试题目回答 Typescript有哪些常用类型? Typescript的常用类型包括: 基本类型:boolean(布尔类型)、number(数字类型)、string(字符串类型)。特殊类型:nul…...
程序语言的内存管理:垃圾回收GC(Java)、手动管理(C语言)与所有权机制(Rust)(手动内存管理、手动管理内存)
文章目录 程序语言的内存管理:垃圾回收、手动管理与所有权机制引言一、垃圾回收机制(GC)(Java)1. 什么是垃圾回收机制2. 垃圾回收的工作原理3. 优点与缺点4. 示例代码 二、手动管理内存的分配和释放(C语言&…...
研究生论文学习记录
文献检索 检索论文的网站 知网:找论文,寻找创新点paperswithcode :这个网站可以直接找到源代码 直接再谷歌学术搜索 格式:”期刊名称“ 关键词 在谷歌学术搜索特定期刊的关键词相关论文,可以使用以下几种方法&#…...
毕业设计选题:基于Django+Vue的图书馆管理系统
开发语言:Python框架:djangoPython版本:python3.7.7数据库:mysql 5.7数据库工具:Navicat11开发软件:PyCharm 系统展示 系统首页 图书馆界面 图书信息界面 个人中心界面 后台登录界面 管理员功能界面 用户…...
#网络安全#NGSOC与传统SOC的区别
NGSOC是Next Generation Security Operation Center(下一代安全运营中心)的缩写。 NGSOC安全运营服务基于态势感知与安全运营平台来开展监测分析等一系列的服务工作,旨在通过专业、高效的运营服务工作,帮助用户尽可能发挥NGSOC作…...
GCN+BiLSTM多特征输入时间序列预测(Pytorch)
目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 GCNBiLSTM多特征输入时间序列预测(Pytorch) 可以做风电预测,光伏预测,寿命预测,浓度预测等。 Python代码,基于Pytorch编写 1.多特征输入单步预测…...
LinkedList和链表之刷题课(下)
1. 给定x根据x把链表分割,大的结点放在x后面,小的结点放在x前面 题目解析: 注意此时的pHead就是head(头节点的意思) 基本上就是给定一个链表,我们根据x的值来把这个链表分成俩部分,大的那部分放在x后面,小的那部分放在x前面,并且我们不能改变链表本来的顺序,比如下面的链表,我…...
ollama 在 Linux 环境的安装
ollama 在 Linux 环境的安装 介绍 他的存在在我看来跟 docker 的很是相似,他把市面上已经存在的大语言模型集合在一个仓库中,然后通过 ollama 的方式来管理这些大语言模型 下载 # 可以直接通过 http 的方式吧对应的 shell 脚本下载下来,然…...
C语言二刷指针篇
&取得变量的地址 printf("%p\n", &a); printf("%p\n", a); printf("%p\n", &a[0]); printf("%p\n", &a[1]); 前三个输出相同,a[0]和a[1]之间相差4 指针就是保存地址的变量,指针里放的是别的…...
LeetCode题练习与总结:回文对--336
一、题目描述 给定一个由唯一字符串构成的 0 索引 数组 words 。 回文对 是一对整数 (i, j) ,满足以下条件: 0 < i, j < words.length,i ! j ,并且words[i] words[j](两个字符串的连接)是一个回文…...
CesiumJS 案例 P7:添加指定长宽的图片图层(原点分别为图片图层的中心点、左上角顶点、右上角顶点、左下角顶点、右下角顶点)
CesiumJS CesiumJS API:https://cesium.com/learn/cesiumjs/ref-doc/index.html CesiumJS 是一个开源的 JavaScript 库,它用于在网页中创建和控制 3D 地球仪(地图) 一、添加指定长宽的图片图层(原点为图片图层的中心…...
Redis 主从同步 问题
前言 相关系列 《Redis & 目录》(持续更新)《Redis & 主从同步 & 源码》(学习过程/多有漏误/仅作参考/不再更新)《Redis & 主从同步 & 总结》(学习总结/最新最准/持续更新)《Redis &a…...
【SQL Server】探讨 IN 和 EXISTS之间的区别
前言 在使用 SQL 查询相关表数据时,通常需要根据另一个表中的值来筛选数据。而 IN 与 EXISTS 子句都是用于此场景的常用方式,但使用时两者存在工作方式不同。它们使用上的选择会显著影响查询的性能,尤其是在大型数据集中。本文我们一起探讨 IN 和 EXISTS 之间的区别、使用与…...
清理pip和conda缓存
当用户目录没有空间时,可清理pip和conda缓存 清理conda缓存: conda clean --all清理pip缓存: pip cache purgeNote: 可以利用软链接,将用户目录下的文件链接到其他位置 首先移动文件或文件夹到其他位置 mv ~/test /…...
git rebase和merge的区别
Git merge和Git rebase是两种不同的合并策略,它们在处理分支合并时有各自的优点和缺点。 Git fetch git fetch 命令用于从远程仓库获取最新的更改,但不会自动合并这些更改到你的本地分支。它会下载远程仓库的所有分支和标签,并更新你的本地…...
【elkb】linux麒麟v10安装ELKB 8.8.X版本(ARM架构)
下载软件 相关版本信息 elasticsearch:8.8.1kibana:8.8.1logstash:8.8.1filebeat:8.8.1 下载地址 https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-8.8.1-linux-aarch64.tar.gzhttps://artifacts.elastic…...
bluez hid host介绍,连接键盘/鼠标/手柄不是梦,安排
零. 前言 由于Bluez的介绍文档有限,以及对Linux 系统/驱动概念、D-Bus 通信和蓝牙协议都有要求,加上网络上其实没有一个完整的介绍Bluez系列的文档,所以不管是蓝牙初学者还是蓝牙从业人员,都有不小的难度,学习曲线也相对较陡,所以我有了这个想法,专门对Bluez做一个系统…...
GPT打数模——电商品类货量预测及品类分仓规划
背景 电商企业在各区域的商品存储主要由多个仓库组成的仓群承担。其中存储的商品主要按照属性(品类、件型等)进行划分和打标,便于进行库存管理。图 1 是一个简化的示意图,商品品类各异,件数众多,必须将这些…...
深圳做网站做app/友情链接只有链接
var viewer new Cesium.Viewer("cesiumContainer", { animation: false, //动画控制不显示 timeline: false, //时间线不显示 fullscreenButton: false, //全屏按钮不显示 infoBox: false }); //去除版权…...
个人电子邮件注册网站申请/市场监督管理局电话
下载安装 官网下载安装:https://www.sublimetext.com/Package Control:https://packagecontrol.io/官方文档:https://www.sublimetext.com/docs/index.html非官方文档(有很多对官方文档的说明):https://do…...
wordpress搜索功能加强/直播回放老卡怎么回事
PHP文章摘要生成方法(函数)文章生成摘要的方法有多种,可以用JS在客户端生成,也可以在服务器端生成,当然更不排除在数据库中加一个摘要字段,在发布文章的时候自行设置。以下是在服务器端生成时的方法。我们在写BLOG时经常需要显示文…...
商城网站建站方案/石家庄新闻网头条新闻
一、调试前提 1. Hardware 720p的DSI接口屏hx8394d,MIPI接口相关原理图如下图 通过原理图获取的信息: 1)2.8V VDD供电脚 —— LDO17; 2)1.8V VDD供电脚 —— LDO6; 3)RESET脚 —— GPIO25; 4)TE脚(一般DSI CMD模式下才会使用)—— GPIO24; 5)背光使能脚 —— G…...
深圳出国劳务公司官网/键词优化排名
大二学年学生自我鉴定范文700字大二学习生活的结束,我的大学生活已经进行了一半,回忆过往的点点滴滴,都是人生最大的财富。想起我大一的自我鉴定似乎还在眼前,但时间总是很快,现在我又将我的大二自我鉴定做一个好好的总…...
营销网站的成功案例/制作网站的工具
策划|小智 “Single boy,single boy,single all the way~Cant find a girl for whole day,better to be gay,hey!” 国人有一种族天赋,就是可以把各种节都过成情人节,继而为爱鼓掌。但与此同时,中国又是一个性别比例失调严重的国家…...