当前位置: 首页 > news >正文

利用前向勾子获取神经网络中间层的输出并将其进行保存(示例详解)

代码示例:

# 激活字典,用于保存每次的中间特征
activation = {}# 将 forward_hook 函数定义在 upsample_v2 外部
def forward_hook(name):def hook(module, input, output):activation[name] = output.detach()return hookdef upsample_v2(in_channels, out_channels, upscale, kernel_size=3):layers = []# Define mid channel stages (three times reduction)mid_channels = [256, 128, 64]  # 512 32 32 -> 256 64 64 -> 128 128 128 -> 64 256 256 -> 2 256 256scale_factor_per_step = upscale ** (1/3)  # Calculate the scaling for each stepcurrent_in_channels = in_channels# Upsample and reduce channels in 3 stepsfor step, mid_channel in enumerate(mid_channels):# Conv layer to reduce number of channelsconv = nn.Conv2d(current_in_channels, mid_channel, kernel_size=kernel_size, padding=1, bias=False)nn.init.kaiming_normal_(conv.weight.data, nonlinearity='relu')layers.append(conv)# ReLU activationrelu = nn.ReLU()layers.append(relu)# Upsampling layerup = nn.Upsample(scale_factor=scale_factor_per_step, mode='bilinear', align_corners=True)layers.append(up)layers[-1].register_forward_hook(forward_hook(f'step_{step}'))# Update current in_channels for the next layercurrent_in_channels = mid_channelconv = nn.Conv2d(current_in_channels, out_channels, kernel_size=kernel_size, padding=1, bias=False)nn.init.kaiming_normal_(conv.weight.data, nonlinearity='relu')layers.append(conv)return nn.Sequential(*layers)
def forward_hook(name):def hook(module, input, output):activation[name] = output.detach()return hook

forward_hook布置了抓取函数。其中,module代表你下面勾的那一层,input代表那一层的输入,output定义那一层的输出,我们常常只使用output。

layers[-1].register_forward_hook(forward_hook(f'step_{step}'))

这里定义了我需要捕获的那一层,layers[-1]代表我要捕获当前layers的最后一层,即上采用层,由于循环了三次,所以最后勾取的应当是三份中间层输出。

相关文章:

利用前向勾子获取神经网络中间层的输出并将其进行保存(示例详解)

代码示例: # 激活字典,用于保存每次的中间特征 activation {}# 将 forward_hook 函数定义在 upsample_v2 外部 def forward_hook(name):def hook(module, input, output):activation[name] output.detach()return hookdef upsample_v2(in_channels, o…...

CTF-RE 从0到N: S盒

S盒(Substitution Box) 是密码学中的一种替换表,用于对输入数据进行非线性变换,以增加加密过程的复杂性。它主要用于对称加密算法中(例如AES、DES),作为加密轮次的一部分,对输入字节…...

MT-Pref数据集:包含18种语言的18k实例,涵盖多个领域。实验表明它能有效提升Tower模型在WMT23和FLORES基准测试中的翻译质量。

2024-10-10,由电信研究所、里斯本大学等联合创建MT-Pref数据集,它包含18种语言方向的18k实例,覆盖了2022年后的多个领域文本。通过在WMT23和FLORES基准测试上的实验,我们展示了使用MT-Pref数据集对Tower模型进行对齐可以显著提高翻…...

【C++ 真题】B2099 矩阵交换行

矩阵交换行 题目描述 给定一个 5 5 5 \times 5 55 的矩阵(数学上,一个 r c r \times c rc 的矩阵是一个由 r r r 行 c c c 列元素排列成的矩形阵列),将第 n n n 行和第 m m m 行交换,输出交换后的结果。 输入格式 输入共 6 6 6 …...

AAPL: Adding Attributes to Prompt Learning for Vision-Language Models

文章汇总 当前的问题 1.元标记未能捕获分类的关键语义特征 如下图(a)所示, π \pi π在类聚类方面没有显示出很大的差异,这表明元标记 π \pi π未能捕获分类的关键语义特征。我们进行简单的数据增强后,如图(b)所示,效果也是如…...

MySQLDBA修炼之道-开发篇(一)

三、开发基础 1. 数据模型 1.1 关系数据模型介绍 关于NULL 如果某个字段的值是未知的或未定义的&#xff0c;数据库会提供一个特殊的值NULL来表示。NULL值很特殊&#xff0c;在关系数据库中应该小心处理。例如查询语句“select*from employee where 绩效得分<85 or>绩…...

Spring MVC 知识点全解析

Spring MVC 知识点全解析 Spring MVC 是一个基于 Java 的请求驱动的 Web 框架&#xff0c;属于 Spring 框架的一部分&#xff0c;广泛用于构建企业级 Web 应用程序。本文将详细阐述 Spring MVC 的核心知识点&#xff0c;包括其工作原理、关键组件、配置、请求处理、数据绑定、…...

python 基于FastAPI实现一个简易的在线用户统计 服务

简易在线用户统计服务 概述 这是一个基于Python的FastAPI框架实现的服务&#xff0c;用于统计客户端的心跳信息&#xff0c;并据此维护在线用户列表以及记录活跃用户数。 功能特性 心跳接收&#xff1a;接受来自客户端的心跳包&#xff0c;以更新客户端的状态。在线用户统计…...

glibc中xdr的一个bug

本人在64位linux服务器上(centos7)&#xff0c;发现xdr_u_long这个函数有个bug&#xff0c;就是数字的范围如果超过unsigned int的最大值(4294967295)时&#xff0c;xdr_u_long失败。 这个场景主要用在unix时间戳上面&#xff0c;比如一款软件&#xff0c;设置有效期为100年。…...

Android Framework定制sim卡插入解锁pin码的界面

文章目录 手机设置SIM卡pin码一、安卓手机二、苹果手机 Android Framework中SIM卡pin码代码定位pin码提示文本位置定位pin码java代码位置 定制pin码framework窗口数字按钮 手机设置SIM卡pin码 设置 SIM 卡 PIN 码可以提高手机的安全性&#xff0c;防止他人在未经授权的情况下使…...

cc2530 Basic RF 讲解 和点灯讲解(1_1)

1. Basic RF 概述 Basic RF 是 TI 提供的一套简化版的无线通信协议栈&#xff0c;旨在帮助开发者快速搭建无线通信系统。它基于 IEEE 802.15.4 标准的数据包收发&#xff0c;但只用于演示无线设备数据传输的基本方法&#xff0c;不包含完整功能的协议。Basic RF 的功能限制包括…...

Android H5页面性能分析策略

文章目录 引言一、拦截资源加载请求以优化性能二、通过JavaScript代码监控资源下载速度三、使用vConsole进行前端性能调试四、使用Chrome DevTools调试Android端五、通过抓包分析优化网络性能六、总结 引言 在移动应用开发中&#xff0c;H5页面的性能直接影响到用户体验。本文…...

【前端面试】Typescript

Typescript面试题目回答 Typescript有哪些常用类型? Typescript的常用类型包括&#xff1a; 基本类型&#xff1a;boolean&#xff08;布尔类型&#xff09;、number&#xff08;数字类型&#xff09;、string&#xff08;字符串类型&#xff09;。特殊类型&#xff1a;nul…...

程序语言的内存管理:垃圾回收GC(Java)、手动管理(C语言)与所有权机制(Rust)(手动内存管理、手动管理内存)

文章目录 程序语言的内存管理&#xff1a;垃圾回收、手动管理与所有权机制引言一、垃圾回收机制&#xff08;GC&#xff09;&#xff08;Java&#xff09;1. 什么是垃圾回收机制2. 垃圾回收的工作原理3. 优点与缺点4. 示例代码 二、手动管理内存的分配和释放&#xff08;C语言&…...

研究生论文学习记录

文献检索 检索论文的网站 知网&#xff1a;找论文&#xff0c;寻找创新点paperswithcode &#xff1a;这个网站可以直接找到源代码 直接再谷歌学术搜索 格式&#xff1a;”期刊名称“ 关键词 在谷歌学术搜索特定期刊的关键词相关论文&#xff0c;可以使用以下几种方法&#…...

毕业设计选题:基于Django+Vue的图书馆管理系统

开发语言&#xff1a;Python框架&#xff1a;djangoPython版本&#xff1a;python3.7.7数据库&#xff1a;mysql 5.7数据库工具&#xff1a;Navicat11开发软件&#xff1a;PyCharm 系统展示 系统首页 图书馆界面 图书信息界面 个人中心界面 后台登录界面 管理员功能界面 用户…...

#网络安全#NGSOC与传统SOC的区别

NGSOC是Next Generation Security Operation Center&#xff08;下一代安全运营中心&#xff09;的缩写。 NGSOC安全运营服务基于态势感知与安全运营平台来开展监测分析等一系列的服务工作&#xff0c;旨在通过专业、高效的运营服务工作&#xff0c;帮助用户尽可能发挥NGSOC作…...

GCN+BiLSTM多特征输入时间序列预测(Pytorch)

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 GCNBiLSTM多特征输入时间序列预测&#xff08;Pytorch&#xff09; 可以做风电预测&#xff0c;光伏预测&#xff0c;寿命预测&#xff0c;浓度预测等。 Python代码&#xff0c;基于Pytorch编写 1.多特征输入单步预测…...

LinkedList和链表之刷题课(下)

1. 给定x根据x把链表分割,大的结点放在x后面,小的结点放在x前面 题目解析: 注意此时的pHead就是head(头节点的意思) 基本上就是给定一个链表,我们根据x的值来把这个链表分成俩部分,大的那部分放在x后面,小的那部分放在x前面,并且我们不能改变链表本来的顺序,比如下面的链表,我…...

ollama 在 Linux 环境的安装

ollama 在 Linux 环境的安装 介绍 他的存在在我看来跟 docker 的很是相似&#xff0c;他把市面上已经存在的大语言模型集合在一个仓库中&#xff0c;然后通过 ollama 的方式来管理这些大语言模型 下载 # 可以直接通过 http 的方式吧对应的 shell 脚本下载下来&#xff0c;然…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发&#xff0c;旨在打造一个互动性强的购物平台&#xff0c;让用户在购物的同时&#xff0c;能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机&#xff0c;实现旋转、抽拉等动作&#xff0c;增…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...