GenAI 生态系统现状:不止大语言模型和向量数据库
自 20 个月前 ChatGPT 革命性的推出以来,生成式人工智能(GenAI)领域经历了显著的发展和创新。最初,大语言模型(LLMs)和向量数据库吸引了最多的关注。然而,GenAI 生态系统远不止这两个部分,它更加广泛和复杂。向量数据库是是赋能 GenAI 应用的关键基础设施,作为其构建者我对于快速的技术进步及向量数据库对行业的影响感到非常兴奋。在本文中,我想回顾一下,并分享对 GenAI 生态系统现状的一些思考。
生成式 AI 应用大致可以分为两种主要类型:检索增强生成(RAG)和多媒体生成。RAG 结合了信息检索技术与生成式语言模型,以产生相关且连贯的输出。另一方面,多媒体生成利用生成式模型创造复杂的视觉内容,包括创意广告和数字孪生(Digital twins)。
检索增强生成(RAG)
检索增强生成(Retrieval-Augmented Generation, RAG)是当前 GenAI 领域中非常流行的一种应用。RAG 系统通常由数据清洗、Embedding 模型、向量数据库和 LLM 等组件构成。更高级的生产级 RAG 系统通常包括额外的组件来增强质量和用户体验。
典型的搜索系统可以分为两个主要部分:离线索引部分和在线查询服务部分。类似地,RAG 包括索引阶段和在线查询服务阶段:
索引阶段:索引阶段涉及从各种来源获取数据,包括数据库、API 和文件系统。这些数据经过文件解析和文本分块处理,为分析做准备。处理后,数据被 Embedding 到适当的格式,并加载到向量数据库中,以便有效检索。一些 RAG 系统甚至采用高级数据挖掘技术,如标签提取、知识图谱构建和摘要,以丰富数据并改进检索过程。
服务阶段:在线查询服务阶段专注于理解用户的查询意图,并采用各种检索方法,包括向量相似性搜索,以找到最相关的信息。检索结果随后被发送到 LLM 进行生成。在这一步中,LLM 基于检索到的数据生成连贯且符合上下文的输出。此外,LLM 还可以作为代理,利用外部工具来增强其能力,并提供更全面和准确的响应。
因此,许多编排项目提供了各种组件的实现和配置选项。架构的复杂性也要求系统既要作为白盒也要作为黑盒进行评估,这促进了评估框架的发展。
每个组件还吸引了旨在构建更好、更丰富功能的开发者,例如每个数据源的 Connector 和针对特定用例量身定制的 Embedding 模型。LLM 推理框架为 LLM 提供了更灵活的部署选项,不仅仅是 API 服务。此外,代理框架有助于更好地利用 LLM 的推理和工具使用能力。
此外,一些项目从不同的角度处理 RAG,探索替代的检索方法,如知识图谱,开发 Web 前端框架以增强 UI 体验,并创建开箱即用的解决方案,提供包括聊天机器人 UI 在内的整个 RAG 工作流程。
1. 工作流程编排与优化
为了管理 RAG 应用的复杂工作流程,广泛使用了如 LangChain、LlamaIndex、Haystack、DSPy 和 Semantic Kernel 等 SDK。这些编排框架使开发者能够构建、定制和测试 RAG Pipeline,确保这些 Pipeline 被组合以实现特定用例的最佳生成答案质量。
示例:LlamaIndex
LlamaIndex 是一个用于构建基于 LLM 的上下文增强应用的框架。它通过提供数据 Ingestion、解析、索引和查询工具,允许开发者将 LLM 与私有数据集成。这种方法通过结合来自用户特定数据源(如 API、SQL 数据库和文档)的上下文,让使用 LLM 搭建特定应用(例如问答、聊天机器人和文档理解)变得更加容易。LlamaIndex 提供了常用组件(如各种分块策略和混合搜索方法)的便捷程序 abstraction。
2. 质量评估与监控
由于 RAG 是一个复杂的系统,在特定场景中实现最佳结果可能具有挑战性。应对这些挑战需要一个科学的评估方法。诸如 Ragas、Arise、Langfuse、Relari AI、Giskard 和 DeepEval 等项目提供了评估和监控所需的指标和工具。它们允许开发者定量地测量、监控和排错他们的 RAG 系统。
示例:Ragas
Ragas 是一个用于评估 RAG Pipeline 的全面框架。Ragas 提供了评估答案质量指标的工具,例如忠实度、相关性和上下文精确度。它支持生成合成测试数据集、监控生产中的 RAG 应用程序,以及与 AI 工具和平台(如 LangChain 和 LlamaIndex)的集成。通过提供一个包含关键性能方面的 Harmonized Ragas 评分,该框架简化并量化了评估过程,最终提高了 RAG Pipeline 的有效性和可靠性。
3. 数据 Connector 和网络抓取
能够无缝集成和处理来自多个源的数据至关重要。像 Airbyte、Fivetran 这样的平台在提供强大的数据 Connector 方面处于领先地位,以及 Apify 和 Zyte 用于网络抓取。它们使企业能够高效地收集、转换和整合数据到 RAG 工作流程中,从而更容易地利用 AI 完成关键任务。数据获取和连接性对于传统搜索系统至关重要,它们在今天的 RAG 中同样重要,RAG 在某种程度上是搜索的一种新形式。
示例:Airbyte
Airbyte 是一个为构建提取和加载(EL)数据 Pipeline 而设计的开源数据传输平台。与许多关注主要服务的数据 Pipeline 平台不同,Airbyte 还支持整合较小的、经常被忽视的服务。通过维护大量的 Connector 并促进社区分享定制 Connector,Airbyte 使公司能够为其特定需求创建定制化的解决方案。其强大的数据 Connector 可以将非结构化数据转换为 Embedding 向量,并加载到 Milvus 等向量数据库中,用于语义相似性搜索。这种能力对于企业来说,有助于高效地收集、转换和整合数据到 RAG 工作流程中,增强 AI 驱动的决策和搜索应用。
4. Embedding 和 Reranker 模型
像 Embedding 模型这样的深度神经网络正在改变非结构化数据的处理和理解方式。OpenAI、Cohere、Voyage AI、Jina AI 和 Twelve Labs 等公司在开发将文本和多模态数据转换为数值向量的高级模型方面处于领先地位。这些 Embedding 模型使得近似最近邻(ANN)向量搜索成为可能,允许应用程序提供高度相关的结果和洞察。
除了通用的 Embdding 模型,像 Voyage AI 这样的公司创建了专门化的模型,以提高特定垂直领域的数据质量,如法律和金融,而 Twelve Labs 专注于视频检索 Embedding 模型。Reranker 是经过专门训练的模型,它们比较查询和一小组候选文档之间的语义相关性,可以进一步提高初始基于向量的检索阶段的结果准确性。Cohere、Voyage AI 和 Jina AI 等公司提供 Reranker 以提高检索准确性。
示例:Voyage AI
Voyage AI 是一个由斯坦福大学和麻省理工学院的 AI 研究人员组成的团队,专注于检索模型,包括 Embedding 模型和 Reranker。他们领先的模型 voyage-2 通过文本对比学习训练,提供了比 OpenAI 的文本 Embedding 模型等行业标准更高的检索准确性、扩展的上下文窗口和高效的推理。Voyage AI 提供通用和特定领域模型,为金融、多语言环境、法律工作和代码检索等领域优化。Voyage AI 还提供 Reranker,以增强检索结果。
5. LLM 推理和托管
随着对 LLM 应用的需求不断增长,高效的托管和推理解决方案变得至关重要。像 vLLM、Lepton AI、Fireworks AI 和 Octo AI 这样的项目为部署和扩展 LLM 提供了强大的基础设施。它们结合了各种推理优化,确保模型在服务期间高效运行。
示例:vLLM
vLLM 是一个用于优化 LLM 推理和服务的开源库。它使用 PagedAttention 机制有效管理内存,并支持对传入请求进行持续批处理。该库通过 CUDA/HIP 图快速执行模型,并包括各种量化技术,如 GPTQ、AWQ、SqueezeLLM 和 FP8 KV 缓存。vLLM 与流行的 HuggingFace 模型无缝集成,提供高吞吐服务,并带有并行采样和 beam search 等解码算法。它支持分布式推理的张量(tensor)和 Pipeline 并行、流式输出,并包括一个与 OpenAI 兼容的 API 服务器。此外,它还提供前缀缓存和多 LoRA 支持等实验性功能,并针对 NVIDIA 和 AMD GPU 进行了优化。
6. 代理和内存管理
GenAI 生态系统在内存管理和基于代理的 AI 系统方面正在取得进展,解决方案如 MemGPT、Mem0、Camel、AutoGPT 和 CrewAI 等。这些创新使 AI 应用能够记住对话历史、利用工具和相互交互,提供更个性化和上下文感知的交互,显著增强用户体验。
示例:MemGPT
MemGPT 是一个开源项目,它旨在简化 Stateful LLM 代理的开发与部署。该项目借鉴了传统操作系统中的内存层次和控制流程,使得 MemGPT 能够自动且智能地管理不同层级的存储,为 LLM 在有限的上下文窗口中提供更广阔的上下文视野。MemGPT 通过 RAG 技术加强了与外部数据源的连接,并支持自定义工具或功能的设定与调用,从而简化了开发高级有状态 LLM 代理的过程。
7. 外部工具和代理 API
外部工具和 API 对于扩展代理的能力至关重要。像 Bing API、Google Search API、Twilio 等服务,以及 OpenAPI 等框架,促进了代理与工具的交互,使应用能够访问和利用外部数据、服务和功能。
示例:Bing API
Bing 搜索 API 套件,包括网页和图像搜索等服务,提供安全、无广告、并具有位置感知的搜索结果。这使得代理能够通过单一的 API 调用访问来自数十亿的网络文档、图像、视频和新闻信息。
8. 前端和搜索/聊天用户界面体验
创建与 AI 应用交互的直观界面对于用户至关重要。像 Streamlit、Vercel 和 Gradio 这样的框架通过提供用户友好的 UI 体验,简化了 AI 应用的开发流程。开发者可以利用这些框架来定制界面,以满足 AI 交互的特定需求,比如为 RAG 应用设计聊天界面,以及为视觉搜索添加图片选择、编辑和浏览等功能。
示例:Streamlit
Streamlit 是一个开源的 Python 框架,专为数据科学家和 AI/ML 工程师设计,它允许用户以极少的代码快速构建动态且交互式的数据应用。该框架采用直观的语法,省去了对 CSS、HTML 或 JavaScript 的依赖,让用户能够迅速开发并部署应用。Streamlit 与 Pandas、NumPy 等流行数据科学库无缝集成,并支持构建 AI 驱动应用所需的后端组件。
9. 知识图谱(KG)
知识图谱通过提供结构化数据,增强了 RAG 性能,从而提升了信息检索的精确度和相关性,使得 AI 生成的响应更加准确且富有上下文感知。如 WhyHow、GraphRAG 和 HippoRAG 等项目将知识图谱与 RAG 技术相结合,以此提升检索结果和生成答案的质量。
示例:WhyHow
WhyHow 是一个平台,旨在帮助开发者更高效地组织和检索非结构化数据,专注于利用知识图谱来增强复杂的 RAG 系统。该平台提供了灵活的数据 Ingestion 工具,支持创建多用户协作的图谱,以促进开发者与非技术领域的专家之间的协作。它还允许进行细致的 Schema 操作,以便将图谱定制化以适应特定的用例。WhyHow 侧重于小型、模块化的图谱和向量块,以此提高信息检索的精确性。该平台兼容向量数据库,并提供了多种格式的导出功能。此外,WhyHow 还提供了一个开源的基于规则(rule-based)的检索包,通过高级过滤技术,助力创建更精确的检索流程。
10. 开箱即用的低代码 RAG 服务
对于 RAG 技术,市场对于即插即用和低代码解决方案的需求日益增长。如 AnythingLLM、PrivateGPT、Dify、Shakudo、Vectara、Epsilla 和 FlowiseAI 等项目,提供了用户友好的解决方案和灵活的定制选项,使得企业能够在不具备数据 Pipeline 和搜索基础设施开发专长的情况下,迅速部署 AI 应用。
示例:AnythingLLM
AnythingLLM 是一个多合一的 AI 应用程序,它提供了交互式 RAG 聊天机器人和 AI 代理,且无需任何编码工作。这一平台专为那些希望快速实现私有化、零配置解决方案或需要定制 AI 应用但又缺乏编码知识的企业设计。AnythingLLM 支持各类商业和开源的 LLM 以及向量数据库。它通过本地和远程部署方式,为用户提供了全面的技术栈。其核心功能包括:用于高效文档管理的工作区、具备细致权限控制的多用户支持、能够进行网页浏览和代码执行的代理、个性化的嵌入式聊天窗口,以及对多种文档格式的广泛支持。此外,AnythingLLM 还为开发者提供了强大的 API,以便进行个性化集成。
11. 图像和视频生成
GenAI 生态系统不仅仅局限于文本应用的范畴;它同样在图像与视频生成领域取得了显著的突破。
创意生成和数字孪生
如 Midjourney、Stability AI、Runway、Pika 和 HeyGen 等工具正借助 AI 驱动的解决方案,引领创意产业的革命,它们能够生成精美绝伦的图像和视频。这些平台为艺术家、营销专家和开发者们提供了强大的能力,使他们能够创作出引人入胜的视觉作品,不断拓展创意和创新的疆域。
示例:Midjourney
Midjourney 是由位于旧金山的独立研究实验室 Midjourney, Inc. 开发的一款先进的生成式 AI 程序和服务。它能够根据自然语言的描述或 Prompt,创造出高质量的图像,这与 OpenAI 的 DALL-E 和 Stability AI 的 Stable Diffusion 有异曲同工之妙。用户可以通过 Discord 机器人与 Midjourney 进行互动,只需输入 /imagine 命令和相应的 Prompt,即可生成四幅图像,并选择进行放大。这一工具不仅展示了 GenAI 生态系统的进步,而且通过扩展数字内容创造的可能性,对创意产业产生了深远的影响。
总结
GenAI 生态系统是一个充满活力且日新月异的领域,它的显著特征是多样性和复杂性。从基础技术如LLM 和向量数据库,到数据采集、工作流程编排和图像生成的创新,GenAI 正在不断拓宽 AI 的疆界。随着不断的探索和创新,GenAI 在多个行业的变革潜力显得无比巨大。在 Zilliz,作为 Milvus 向量数据库的开发者,我们与 GenAI 领域的众多合作伙伴携手共进。我们热切期待见证并积极参与 GenAI 的持续演进,并对未来它所能开启的无限可能充满期待。
作者介绍
陈将
Zilliz 生态和 AI 平台负责人
推荐阅读
相关文章:
GenAI 生态系统现状:不止大语言模型和向量数据库
自 20 个月前 ChatGPT 革命性的推出以来,生成式人工智能(GenAI)领域经历了显著的发展和创新。最初,大语言模型(LLMs)和向量数据库吸引了最多的关注。然而,GenAI 生态系统远不止这两个部分&#…...
gitlab 配置ssh keys
settings -- 终端配置: git config --global user.email "yxthotmail.cm" 配置gitlab 账号邮箱 git config --global user.name "xt.yao" 配置gitlab账号用户名 生成SSH key,输入命令ssh-keygen -t rsa,一直按回车…...
小程序开发实战:PDF转换为图片工具开发
目录 一、开发思路 1.1 申请微信小程序 1.2 编写后端接口 1.3 后端接口部署 1.4 微信小程序前端页面开发 1.5 运行效果 1.6 小程序部署上线 今天给大家分享小程序开发系列,PDF转换为图片工具的开发实战,感兴趣的朋友可以一起来学习一下!…...
我有两台120kw充电桩一天能赚多少钱
(当前是理想状态下,当然还要看场地费用,还有物业,变压器,等等) ———————————————————— ———————————————————— 要计算两台120kW充电桩能赚多少钱,我们…...
深入了解 Android 中的命名空间:`xmlns:tools` 和其他常见命名空间
在 Android 开发中,xmlns (.xml的namespace)命名空间是一个非常重要的概念。通过引入不同的命名空间,可以使用不同的属性来设计布局、设置工具属性或者支持自定义视图等。除了 xmlns:tools 以外,还有很多常见的命名空间…...
stable-zero123模型构建指南
一、介绍 stabilityai出品,能够对有简单背景的物体进行三维视角图片的生成,简单来说也就是通过调整变换观察的视角生成对应视角的图片。 本项目通过comfyui实现。 二、容器构建说明 1. 部署ComfyUI (1)使用命令克隆ComfyUI g…...
算法题解记录32+++最长连续序列(百题筑基)
你们好,我是蚊子码农,好久不见。由于秋招求职的繁琐事情,我有很长一段时间没更新博客,希望我的粉丝们能够谅解。 秋招我拿到了一些offer,最终决定去一个主要做“网络安全”业务的公司工作,也许明天会更好&a…...
全球知名度最高的华人起名大师颜廷利:世界顶级思想哲学教育家
全国给孩子起名最好的大师颜廷利教授在其最新的哲学探索中,提出了《升命学说》这一前沿理论观点,该理论不仅深刻地回应了古今中外众多哲学流派和思想体系的精髓,还巧妙地融合了实用主义、理想主义以及经验主义的核心理念。通过这一独特的视角…...
Flink Rest API
REST API | Apache Flink Flink官网API 通过curl 或者Rest API工具测试web UI对应的接口返回信息 Flink 提交yarn任务 ./bin/flink run -t yarn-per-job historyServer ../bin/historyserver.sh start...
Zig 语言通用代码生成器:逻辑,冒烟测试版发布二
Zig 语言通用代码生成器:逻辑,冒烟测试版发布二 Zig 语言是一种新的系统编程语言,其生态位类同与 C,是前一段时间大热的 rust 语言的竞品。它某种意义上的确非常像 rust,尤其是在开发过程中无穷无尽抛错的过程&#x…...
mysql 通过GROUP BY 聚合并且拼接去重另个字段
我的需求: 我想知道同一个手机号出现几次,并且手机号出现在哪些地方。下面是要的效果。 源数据: CREATE TABLE bank (id bigint(20) unsigned NOT NULL AUTO_INCREMENT,user_id int(11) NOT NULL DEFAULT 0,tel varchar(255) COLLATE utf8mb4_unicode_…...
Java应用程序的测试覆盖率之设计与实现(一)-- 总体设计
一、背景 作为测试,如何保证开发人员提交上来的代码都被测试覆盖到,是衡量测试质量的一个重要指标。 本系列文章将要说一说,如何搭建一套测试覆盖率的系统。 包括以下内容: jacoco agent采集执行覆盖率数据jacoco climaven集成jacoco:jacoco-maven-pluginant集成jacoco:…...
Unity C#脚本的热更新
以下内容是根据Unity 2020.1.0f1版本进行编写的 目前游戏开发厂商主流还是使用lua框架来进行热更,如xlua,tolua等,也有的小游戏是直接整包更新,这种小游戏的包体很小,代码是用C#写的;还有的游戏就是通过…...
监督学习之逻辑回归
逻辑回归(Logistic Regression) 逻辑回归是一种用于二分类(binary classification)问题的统计模型。尽管其名称中有“回归”二字,但逻辑回归实际上用于分类任务。它的核心思想是通过将线性回归的输出映射到一个概率值…...
深度优先算法(DFS)洛谷P1683-入门
虽然洛谷是有题解的,但是你如果直接看得懂题解,你也不会来看这篇文章.. 这些代码均是我记录自身成长的记录,有写的不好的地方请谅解! 先上代码: #include <iostream> #include <vector> #include<iomanip> #include<cstdio&…...
Python数据分析基础
本文介绍了Python在数据分析中的应用,包括数据读取、清洗、处理和分析的基本操作。通过使用Pandas和Numpy库,我们可以高效地处理大量数据,并利用Matplotlib和Seaborn库进行数据可视化。 1. 引言 Python因其简洁的语法和强大的库支持&#x…...
《企业自设2-软件测试》线下课day3: 006扩展虚拟机
1.win11 修改hosts无权限 分别再cmd终端输入以下两行代码: C:\Windows\System32\drivers\etcnotepad hosts 2.先保存快照!!! 3.关闭虚拟机,将内存,CPU进行修改 就是再这个位置修改: 4.运…...
配置和排查 Lombok 在 IDEA 中使用的详细步骤
在日常开发中,Java 代码常常需要大量的样板代码,比如 getter、setter、toString 等方法。Lombok 是一个 Java 库,可以通过注解的方式,自动生成这些常见的代码,从而让代码更加简洁、清晰。比如,我们可以通过…...
JavaWeb合集18-接口管理Swager
十八、接口管理 1、Swager 使用Swagger你只需要按照它的规范去定义接口及接口相关的信息,就可以做到生成接口文档,以及在线接口调试页面。 官网: https://swagger.io/ Knife4j是为Java MVC框架集成Swagger生成Api文档的增强解决方案。 <dependency&g…...
背包九讲——二维费用背包问题
目录 二维费用背包问题 问题描述: 解决方法: 方法一: 代码实现: 方法二: 代码实现: 背包问题第五讲——二维费用背包问题 背包问题是一类经典的组合优化问题,通常涉及在限定容量的背包中…...
【mysql进阶】4-7. 通用表空间
通⽤表空间 - General Tablespace 1 通⽤表空间的作⽤和特性? ✅ 解答问题 通⽤表空间是使⽤ CREATE tablespace 语法创建的共享InnoDB表空间 通⽤表空间能够存储多个表的数据,与系统表空间类似也是共享表空间; 服务器运⾏时会把表空间元数…...
2024 年互联网大厂 1300 多道 JAVA 面试题汇总,包含了程序员的所有技术点
作为一个 Java 程序员,你平时总是陷在业务开发里,每天噼里啪啦忙敲着代码,上到系统开发,下到 Bug 修改,你感觉自己无所不能。然而偶尔的一次聚会,你听说和自己一起出道的同学早已经年薪 50 万,而…...
【开源免费】基于SpringBoot+Vue.JS在线文档管理系统(JAVA毕业设计)
本文项目编号 T 038 ,文末自助获取源码 \color{red}{T038,文末自助获取源码} T038,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 查…...
Linux资源与网络请求
参数说明: d : 改变显示的更新速度,或是在交谈式指令列( interactive command)按 sq : 没有任何延迟的显示速度,如果使用者是有 superuser 的权限,则 top 将会以最高的优先序执行c : 切换显示模式,共有两种模式&#…...
RPA技术重塑企业自动化的未来
1. RPA定义与原理 1.1 机器人流程自动化(RPA)概念 机器人流程自动化(Robotic Process Automation,简称RPA)是一种软件技术,通过模拟人类用户在计算机界面上的操作来执行重复性的业务流程任务。RPA软件机器人能够自动执行基于规则…...
使用RabbitMQ实现延迟消息的完整指南
在分布式系统中,消息队列通常用于解耦服务,RabbitMQ是一个广泛使用的消息队列服务。延迟消息(也称为延时队列或TTL消息)是一种常见的场景应用,特别适合处理某些任务在一段时间后执行的需求,如订单超时处理、…...
阿里员工:阿里工作7年至少得P7吧,快的都P8了,年薪100W是正常的,80才算及格...
上一篇:一线体面男的收入 年薪64W的阿里蚂蚁员工爆料:在阿里,工作7年至少得P7,快的都P8了,年薪100W才正常,80分才算及格。 其实,在大厂工作,听起来风光无限,但个中滋味&a…...
Django进一步掌握(10月22日)
一、请求响应对象 请求对象request 响应对象HttpResponse 二、HttpResponse常用属性 status设置HTTP响应状态码 status_code查询HTTP响应状态码 content_type设置响应的类型 write()写入响应内容 三、重定向 1、实现URl访问的重定向 (1)使用Ht…...
C++从入门到起飞之——红黑树封装map和set 全方位剖析!
目录 1、map和set的整体框架 2、map和set迭代器的实现 3、map支持[] 4、完整源码 set.h map.h RBTree.h 1、map和set的整体框架 因为map和set的底层都是红黑树,所以我们考虑用一个红黑树的类模版去实例化map和set对象!不过,map节点中存…...
【javax maven项目缺少_Maven的依赖管理 引入依赖】
javax maven项目缺少_Maven的依赖管理 引入依赖 Maven的依赖管理 - 引入依赖依赖管理(引入依赖)导入依赖 https://blog.csdn.net/weixin_28932089/article/details/112381468 Maven的依赖管理 - 引入依赖 依赖管理(引入依赖) 能够掌握依赖引入的配置方式 导入依赖 导入依赖练…...
网站地址怎么做超链接/网站推广的方法有哪些
Cadence Allegro 画完PCB 铺完铜箔(覆铜)后,如果需要再对PCB进行布线检查或调整,总感觉那些shape好碍眼,Allegro 的铺铜 shape 能否设置得像 pads 一样,默认只显示铺铜边框或者默认不显示呢?Allegro 能否单独关闭铺铜s…...
南京网站排名/友情链接交换软件
setTimeout 在 js 加载前的问题探究 思思放出一道题目,深究一下发觉很有意思<script>setTimeout(() > {alert(2);}, 0)</script> <script src"https://test.tms-uat.xuebangsoft.net/plugins/jquery-1.10.2.min.js"></script>…...
wordpress 游客留言/怎么自己开网站
前提条件: (1) zabbix服务器端已经成功安装并且运行。 (2) zabbix客户端已经成功建立并且运行。 1 下载并且安装msmtp软件 Wget http://sourceforge.net/projects/msmtp/files/msmtp/1.4.32/msmtp-1.4.32.tar.bz2/download tar jxvf msmtp-1.4.32.tar.bz2 cd ms…...
郑州网站建设开拓者/谷歌推广开户多少费用
HTML DOM 访问访问 HTML DOM - 查找 HTML 元素。访问 HTML 元素(节点)访问 HTML 元素等同于访问节点您能够以不同的方式来访问 HTML 元素:通过使用 getElementById() 方法通过使用 getElementsByTagName() 方法通过使用 getElementsByClassName() 方法getElementByI…...
如何靠做网站赚钱/网络销售怎么找客户
Org-mode 学习: http://emacser.com/org-mode.htm http://starb.me/2009/12/24/emacs-org-mode/...
商丘做网站多少钱/网站建设知名公司
网址1 网址2 网址3 随便点击以上任一链接,输入应用在google play上的网址就可以获取下载链接。...