当前位置: 首页 > news >正文

numpy——数学运算

一、标量——矢量

import numpy as npa = 3.14
b = np.array([[9, 5], [2, 7]])print(a)
print(b)# ---------- 四则运算 ----------
print(a + b)  # np.add
print(a - b)  # np.subtract
print(a * b)  # np.multiply
print(a / b)  # np.divide

474db7397569448cae0cb0a836662c76.png

二、矢量——矢量

import numpy as npa = np.array([[3, 1], [4, 1]])
b = np.array([[9, 5], [2, 7]])print(a)
print(b)# ---------- 四则运算 ----------
print(a + b)
print(a - b)
print(a * b)  # 注意: 这不是矩阵的乘法
print(a / b)

d36e68fa1d744fbfb62af299ee0d76f3.png

三、广播

import numpy as npa = np.array([3, 1])
b = np.array([[9, 5], [2, 7]])# print(a)
# print(a.shape)
# print(b)
# print(b.shape)# ---------- 广播 ----------
# 当矩阵维度不同时, 可以进行广播操作
print(a + b)
print(a - b)
print(a * b)
print(a / b)

b9e260988c294f7bb01fbfef87f071f4.png

四、矢量相乘

import numpy as npa = np.array([[9, 5], [2, 7]])
b = np.array([[3, 1, 4], [1, 5, 9]])print(a)
print(b)# ---------- 矩阵相乘(前列=后行) ----------
print(np.dot(a, b))

13bad08825c64af7bcfb11689150b883.png

五、常见计算

import numpy as npt = np.random.uniform(0, 10, size=(3, 4))
print(t)print(np.ceil(t))  # 向上取整
print(np.floor(t))  # 向下取整
print(np.rint(t))  # 四拾伍入
print(np.isnan(t))  # 判空为 NAN(Not A Number)
print(np.where(t > 5, 1, 0))  # 三元运算: 1 if t > 5 else 0   #数据预处理

52d3c99c70ed4859a29566c328e0fc64.png

六、统计函数

import numpy as np# 姓名  数学  语文  总分
# 小明   63   92   155
# 小红   89   76   165
# 总分   152  168t = np.array([[63, 92],[89, 76],
])# # ---------- 求和 ----------
# print(np.sum(t, axis=1))  # 按行求和
# print(np.sum(t, axis=0))  # 按列求和# ---------- 平均值 ----------
print(np.mean(t, axis=1))  # 按行求平均值
print(np.average(t, axis=1))  # 按行求平均值
#
print(np.mean(t, axis=0))  # 按列求平均值
print(np.average(t, axis=0))  # 按列求平均值
#
# ---------- 最大与最小 ----------
print(np.max(t, axis=1))  # 按行求最大值
print(np.max(t, axis=0))  # 按列求最大值print(np.min(t, axis=1))  # 按行求最小值
print(np.min(t, axis=0))  # 按列求最小值
#
# ---------- 标准差与方差 ----------
print(np.std(t, axis=1))  # 按行求标准差
print(np.var(t, axis=1))  # 按行求方差
#
# # ---------- 最值的索引 ----------
print(np.argmax(t, axis=1))  # 按行求最大值的索引
print(np.argmin(t, axis=1))  # 按行求最小值的索引
#
# ---------- 累计操作 ----------
print(np.cumsum(t, axis=1))  # 累加和: 当前元素与前一个元素的和
print(np.cumprod(t, axis=1))  # 累乘积: 当前元素与前一个元素的积

f82d1b489f5a4647a9742641f045e14f.png

七、判断函数

import numpy as npt = np.array([[9,5], [2, 7]])print(t.any())  # 至少有一个元素满足指定条件, 返回True   cyc:没空的
print(t.all())  # 所有的元素满足指定条件, 返回Truet = np.array([[3, 1], [4, 1]])
print(np.unique(t))  # 去重, 并升序返回

d6832bbec5884c9aa084d4ba9dea75c6.png

 

相关文章:

numpy——数学运算

一、标量——矢量 import numpy as npa 3.14 b np.array([[9, 5], [2, 7]])print(a) print(b)# ---------- 四则运算 ---------- print(a b) # np.add print(a - b) # np.subtract print(a * b) # np.multiply print(a / b) # np.divide 二、矢量——矢量 import nump…...

【工具】Charles对360浏览器抓包抓包

Charles 和 switchy sharp 配合,可以对 Chrome 进行抓包也可以配合对360安全浏览器抓包。 本文以Windows 电脑中的配置为例,介绍如何实现抓包。(Mac中操作基本一致) 1.安装Charles 可根据自己的电脑下载对应的版本:…...

【HarmonyOS】判断应用是否已安装

【HarmonyOS】判断应用是否已安装 前言 在鸿蒙中判断应用是否已安全,只是通过包名是无法判断应用安装与否。在鸿蒙里新增了一种判断应用安装的工具方法,即:canOpenLink。 使用该工具函数的前提是,本应用配置了查询标签querySch…...

Qt Designer客户端安装和插件集(pyqt5和pyside2)

GitHub - PyQt5/QtDesignerPlugins: Qt Designer PluginsQt Designer Plugins. Contribute to PyQt5/QtDesignerPlugins development by creating an account on GitHub.https://github.com/PyQt5/QtDesignerPlugins 一、下载客户端 https://github.com/PyQt5/QtDesigner/rel…...

基于边缘计算的智能门禁系统架构设计分析

案例 阅读以下关于 Web 系统架构设计的叙述,回答问题1至问题3。 【说明】 某公司拟开发一套基于边缘计算的智能门禁系统,用于如园区、新零售、工业现场等存在来访被访业务的场景。来访者在来访前,可以通过线上提前预约的方式将自己的个人信息…...

鸿蒙实现相机拍照及相册选择照片

前言: 1.如果你的应用不是存储类型或者相机拍照类型,你就需要用 kit.CameraKit Api 实现相机拍照和相册选择照片功能,如果你不用这个的话,你使用 picker.PhotoViewPicker ,你就需要申请权限,那你提交应用审…...

「C/C++」C++17 之 std::filesystem::recursive_directory_iterator 目录及子目录迭代器

✨博客主页何曾参静谧的博客📌文章专栏「C/C」C/C程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…...

智能EDA小白从0开始 —— DAY30 冉谱微RFIC-GPT

在科技日新月异的今天,电子设计自动化(EDA)行业正以前所未有的速度推动着半导体产业的革新与发展,引领着全球电子产业迈向更加智能化、高效化的未来。作为EDA领域的佼佼者,冉谱公司始终站在技术创新的前沿,…...

Android -- 调用系统相册之图片裁剪保存

前言 最近线上反馈,部分vivo手机更换头像时调用系统相册保存图片失败,经本人测试,确实有问题。 经修复后,贴出这块的代码供小伙伴们参考使用。 功能 更换头像选择图片: 调用系统相机拍照,调用系统图片…...

读《道德经》让人感到心胸气闷?董仲舒篡改

为什么读《道德经》会让人感到心胸气闷?难道是董仲舒篡改所致? 作为世界智慧源头的《老子》,享誉古今中外,是世界历史上最伟大的著作之一。 然而,很多人读《道德经》时会感到心胸气闷,这究竟是为什么呢&am…...

D52【python 接口自动化学习】- python基础之模块与标准库

day52 标准库 学习日期:20241029 学习目标:模块与标准库 -- 67 标准库:Python默认提供的便携功能有哪些? 学习笔记 标准库中的常见组件 如何通过官方文档学习标准 from urllib.request import urlopen with urlopen(http://ww…...

基于yolov8的布匹缺陷检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】

更多目标检测和图像分类识别项目可看我主页其他文章 功能演示: 基于yolov8的布匹缺陷检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】_哔哩哔哩_bilibili (一)简介 基于yolov8的布匹缺陷检测系统是在 PyTo…...

SQL Server 中,将单行数据转换为多行数据

在 SQL Server 中,将单行数据转换为多行数据通常涉及到将某个字段中的逗号分隔的值拆分成多行。这种操作通常称为“拆分”或“展开”(Explode)。以下是一些常用的方法来实现这一目标: 1. 使用内置函数 STRING_SPLIT 从 SQL Serv…...

解决数组两数之和问题与逻辑推理找出谋杀案凶手

给定一个整数数组nums和一个整数目标值target(2<nums.length<10^4)&#xff0c;请你在该数组中找出和为目标值target 的那两个整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案&#xff0c;并且你不能使用两次相同的元素。 你可以按任意顺序返…...

uniapp的IOS证书申请(测试和正式环境)及UDID配置流程

1.说明 本教程只提供uniapp在ios端的证书文件申请&#xff08;包含正式环境和开发环境&#xff09;、UDID配置说明&#xff0c;请勿用文档中的账号和其他隐私数据进行测试&#xff0c;请勿侵权&#xff01; 2.申请前准备 证书生成网站&#xff1a;苹果应用上传、解析&#x…...

windows 安装apex_Nvidia Apex安装

参见windows 安装apex_Nvidia Apex安装 重点&#xff1a; 1、在安装前先检查一下&#xff0c;电脑的cuda版本和pytorch内的cuda版本是否一样&#xff0c;不一样的话就把低版本的进行升级&#xff1b; $ git clone https://github.com/NVIDIA/apex$ cd apex2、在保证cuda版本一…...

Laravel5 抓取第三方网站图片,存储到本地

背景 近期发现&#xff0c;网站上的部分图片无法显示&#xff0c; 分析发现&#xff0c;是因为引用的第三方网站图片&#xff08;第三方服务器证书已过期&#xff09; 想着以后显示的方便 直接抓取第三方服务器图片&#xff0c;转存到本地服务器 思路 1. 查询数据表&#xff0…...

DevOps和CI/CD以及在微服务架构中的作用

DevOps 和 CI/CD 是现代软件开发和运维中两个重要的概念,它们之间有紧密的联系,但也有不同的侧重点。以下是对这两个概念的详细介绍和比较。 1. DevOps 定义: DevOps 是一种文化、运动和实践,旨在通过促进开发(Development)和运维(Operations)团队之间的协作,提升软…...

Rust 力扣 - 5. 最长回文子串

文章目录 题目描述题解思路题解代码题解链接 题目描述 题解思路 从中心点先寻找和中心点相等的左右端点&#xff0c;在基于左右端点进行往外扩散&#xff0c;直至左右端点不相等或者越界&#xff0c;然后左右端点这个范围内就是我们找寻的回文串&#xff0c;我们遍历中心点&am…...

DDOS防护介绍

DDoS攻击的基本概念 分布式拒绝服务攻击&#xff08;DDoS&#xff09;是一种网络攻击方式&#xff0c;攻击者通过控制多个被感染的计算机&#xff08;僵尸网络&#xff09;同时向目标服务器发送大量的网络请求&#xff0c;导致目标服务器资源耗尽&#xff0c;无法正常提供服务…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...