从0开始深度学习(23)——图像卷积
上节了解了卷积层的原理,本节以图像为例,介绍一下它的实际应用
1 互相关运算
严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation)。
首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示。输入的二维张量形状是 3 × 3 3 \times 3 3×3,卷积核的形状是 2 × 2 2\times2 2×2,计算如下图:
在二维互相关运算中,卷积窗口从输入张量的左上角开始,从左到右、从上到下滑动。 当卷积窗口滑动到新一个位置时,包含在该窗口中的部分张量与卷积核张量进行按元素相乘,计算步骤如下: 0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19 , 1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25 , 3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37 , 4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43. \begin{split}0\times0+1\times1+3\times2+4\times3=19,\\ 1\times0+2\times1+4\times2+5\times3=25,\\ 3\times0+4\times1+6\times2+7\times3=37,\\ 4\times0+5\times1+7\times2+8\times3=43.\end{split} 0×0+1×1+3×2+4×3=19,1×0+2×1+4×2+5×3=25,3×0+4×1+6×2+7×3=37,4×0+5×1+7×2+8×3=43.
输出大小等于输入大小 n h × n w n_h \times n_w nh×nw减去卷积核大小 k h × k w k_h \times k_w kh×kw,即: ( n h − k h + 1 ) × ( n w − k w + 1 ) . (n_h-k_h+1) \times (n_w-k_w+1). (nh−kh+1)×(nw−kw+1).
下面是手动实现一个二维互相关运算:
import torch# x是输入张量,k是卷积核张量
def corr2d(x,k):# 确定输出张量的大小y=torch.zeros(x.shape[0]-k.shape[0]+1,x.shape[1]-k.shape[1]+1)for i in range(y.shape[0]):for j in range(y.shape[1]):y[i,j]=(x[i:i+k.shape[0],j:j+k.shape[1]]*k).sum()#X[i:i + h, j:j + w] 提取输入矩阵 X 中从位置 (i, j) 开始,大小与卷积核 K 相同的子区域。return yX = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)
运行结果:

2 卷积层
卷积层对输入和卷积核权重进行互相关运算,并在添加标量偏置之后产生输出。 所以,卷积层中的两个被训练的参数是卷积核权重和标量偏置。
下面将基于上面定义的corr2d函数实现二维卷积层。在__init__构造函数中,将weight和bias声明为两个模型参数。前向传播函数调用corr2d函数并添加偏置。
class Conv2d(nn.Module):def __init__(self,kernel_size):super().__init__()self.weight=nn.Parameter(torch.rand(kernel_size))self.bias=nn.Parameter(torch.zeros(1))def forward(self,x):return corr2d(x,self.weight)+self.bias# 对输入和卷积核权重进行互相关运算,并在添加标量偏置之后产生输出
3 图像中目标的边缘检测
如下是卷积层的一个简单应用:通过找到像素变化的位置,来检测图像中不同颜色的边缘。 首先,我们构造一个 6 × 8 6\times8 6×8像素的黑白图像:
import matplotlib.pyplot as plt
X = torch.ones((6, 8))
X[:, 2:6] = 0
print(X)

可视化一下是下面这样:

接下来我们构造一个 1 × 2 1\times2 1×2的卷积核 k k k,数值为 [ 1.0 , − 1.0 ] [1.0, -1.0] [1.0,−1.0],观察矩阵可知,当进行互相关运算时:
- 如果水平相邻的元素相同,则输出为零
- 如果水平相邻的元素不同,则输出为非零
现在进行运算:
K = torch.tensor([[1.0, -1.0]])
Y = corr2d(X, K)
Y
运行结果:

结果分析: 输出Y中的1代表从白色到黑色的边缘,-1代表从黑色到白色的边缘,其他情况的输出为0
但是如果我们把输入的二维图像转置,再进行互相关运算,输出如下:
corr2d(X.t(), K)
运行结果:

说明该卷积核只能检测垂直边缘,无法检测水平边缘
4 卷积核
上述检测黑白边缘的例子中,我么使用的是 [ 1 , − 1 ] [1,-1] [1,−1]的卷积核,但是面对更加复杂,或者连续的卷积层时,手动设计卷积核不现实,所以我们希望通过计算梯度来自动更新卷积核。
下面我们将使用内置的卷积层,并暂时忽略偏置,这里补充一点nn.Conv2d的输入格式和输出格式都是 (批量大小、通道、高度、宽度) (批量大小、通道、高度、宽度) (批量大小、通道、高度、宽度):
# 构造一个二维卷积层,它具有1个输出通道和形状为(1,2)的卷积核
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)# 其中批量大小和通道数都为1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 0.001 # 学习率for i in range(400):Y_hat = conv2d(X)l = (Y_hat - Y) ** 2conv2d.zero_grad()l.sum().backward()# 迭代卷积核conv2d.weight.data[:] -= lr * conv2d.weight.gradif (i + 1) % 100 == 0:print(f'epoch {i+1}, loss {l.sum():.3f}')conv2d.weight.data.reshape((1, 2))# 输出卷积核的权重张量
运行结果:

可以看到400次迭代后,误差已经足够低了,而且卷积核的权重是 [ 0.9910 , − 0.9910 ] [ 0.9910, -0.9910] [0.9910,−0.9910],已经非常接近我们之前定义的卷积核的权重了
5 特征映射和感受野
①特征映射:输出的卷积层有时被称为特征映射(feature map),因为它可以被视为一个输入映射到下一层的空间维度的转换器。
②感受野:在卷积神经网络中,对于某一层的任意元素 x x x,其感受野是指在前向传播期间可能影响 x x x计算的所有元素(来自所有先前层)。
相关文章:
从0开始深度学习(23)——图像卷积
上节了解了卷积层的原理,本节以图像为例,介绍一下它的实际应用 1 互相关运算 严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation)。 首先,我们暂时忽略通…...
编程小白如何成为大神
成为编程大神的过程需要时间、耐心和实践。以下是一些适合大学新生的入门攻略: 1. 确定学习目标 选择语言:选择一门编程语言作为起点,如 Python、Java 或 JavaScript。Python 是初学者的热门选择,因为其语法简洁易懂。设定目标&…...
JetCache启动循环依赖分析
问题呈现 项目性能优化,需要将本地内存(JVM内存)替换为本地Redis(同一个Pod中的Container),降低JVM内存和GC的压力,同时引入了JetCache简化和统一使用(对JetCache也做了扩展&#x…...
【科研绘图】3DMAX管状图表生成插件TubeChart使用方法
3DMAX管状图表生成插件TubeChart,一款用于制作3D管状图表的工具。可以自定义切片的数量以及随机或指定切片颜色。 【版本要求】 3dMax 2008及更高版本 【安装方法】 TubeChart插件无需安装,使用时直接拖动插件脚本文件到3dMax视口中打开即可࿰…...
基于SSM土家风景文化管理系统的设计
管理员账户功能包括:系统首页,个人中心,用户管理,景点分类管理,热门景点管理,门票订单管理,旅游线路管理,系统管理 前提账号功能包括:系统首页,个人中心&…...
C++超强图片预览器
下载 文件打开关联 关键代码 uint32_t getSrcPx3(const cv::Mat& srcImg, int srcX, int srcY, int mainX, int mainY) const {cv::Vec3b srcPx = srcImg.at<cv::Vec3b>(srcY, srcX);intUnion ret = 255;if (curPar.zoomCur < curPar.ZOOM_BASE && src…...
网络搜索引擎Shodan(2)
声明:学习视频来自b站up主 泷羽sec,如涉及侵权马上删除文章 声明:本文主要用作技术分享,所有内容仅供参考。任何使用或依赖于本文信息所造成的法律后果均与本人无关。请读者自行判断风险,并遵循相关法律法规。 感谢泷…...
【Tableau】
Tableau 是一款强大且广泛使用的数据可视化和商业智能(BI)工具,用于帮助用户分析、探索和呈现数据。它通过直观的拖放界面,允许用户轻松创建动态仪表板和报告,而无需编写代码。Tableau 可处理多种数据源,如…...
分类与有序回归
分类问题 分类问题,例如分类猫、狗、猪时,使用数字进行表示为1,2,3。而1、2、3之间有大小,分类算法为了平衡标签之间的差异,使得损失公平,会使用one-hot编码。例如,分别使用&#x…...
Mac如何实现高效且干净的卸载应用程序
使用Mac卸载应用程序,你还在使用废纸篓这个办法吗,看不见卸载了什么,看不见清理了多少,真的不会有残留吗 XApp Mac上的卸载专家,强大的垃圾逻辑检测,垃圾扫描更全面,卸载更干净 使用简单&#…...
LaTex中的常用空格命令
【LaTex中的常用空格命令】 在 LaTeX 中,有几个常用的空格指令: ● \,:一个小空格,通常用于在数学公式中插入较小的间距。● \quad:一个等宽空格,相当于当前字体尺寸下的字符宽度。 ● \qquad:两…...
k8s 1.28.2 集群部署 Thanos 对接 MinIO 实现 Prometheus 数据长期存储
文章目录 [toc]什么是 ThanosThanos 的主要功能Thanos 的架构组件Thanos 部署架构SidecarReceive架构选择 开始部署部署架构创建 namespacenode-exporter 部署kube-state-metrics 部署Prometheus Thanos-Sidecar 部署固定节点创建 label生成 secretMinIO 配置etcd 证书 启动 P…...
域渗透AD渗透攻击利用 python脚本攻击之IPC连接 以及 python生成exe可执行程序讲解方式方法
Python脚本批量检测ipc连接 import os, timeips [192.168.1.121,192.168.1.8 ] users {administrator,hack,hack1,test, } passs {123qq.com,456qq.com,Admin12345 } for ip in ips:for user in users:for mima in passs:exec1 "net use \\" "\\" i…...
行为设计模式 -命令模式- JAVA
命令模式 一.简介二. 案例2.1 接收者(Receiver)2.2 命令接口实现对象(ConcreteCommand)2.3 调用者( invoker)2.4 获取Receiver对象2. 5 装配者客户端测试 三. 结论3.1 要点3.2 示例 前言 本设计模式专栏写了…...
使用redis实现发布订阅功能及问题
如何使用redis实现发布订阅及遇到的问题 使用背景: 服务A通过接口操作服务B,实现相应逻辑。生产环境上,服务A有两个pod,服务B有3个pod 通过接口调用时,请求只能打到服务B的一个pod上,而我们想要的是服务B的…...
Debug日程工作经验总结日程常用
数据库 db连接命令 kubectl exec -it -n de dbs-53-cdf57d8dd-l4l29 sh su - postgres psql psql -h 10.115.19.118 -p 12080 -U postgres -d clouddb SET search_path TO “h.com”; select * from ems_ice limit 1; 也可以不切换schema,直接sql查询 select * f…...
Apache Paimon主键表的一些最佳实践
今天我们说说Paimon主键表的一些使用上的注意事项。 一、主键表 主键表是Paimon的一种表类型。用户可以插入、更新或删除表中的记录。 说的直白点就是,允许你设置唯一主键,然后覆盖更新。 Bucket选择 无论分区表还是未分区表,Bucket都是最小的…...
React面试常见题目(基础-进阶)
React面试常见题目及详细回答讲解 基础题目(20个) 什么是React? 回答:React是一个用于构建用户界面的JavaScript库,它允许你将UI拆分成可复用的组件。React起源于Facebook的内部项目,用于构建高性能的Web应…...
AI赋能:开启你的副业创业之路
随着人工智能(AI)技术的迅猛发展,越来越多的人开始探索与之相关的副业机会。AI不仅深刻改变了我们的工作和生活方式,还为愿意学习和运用这项技术的人们打开了丰富的创业和增收之门。今天,我们就来盘点几条与AI相关的副…...
前端文件上传组件流程的封装
1. 前端文件上传流程 选择文件: 用户点击上传按钮,选择要上传的文件。使用 <input type"file"> 或 FileReader API 读取文件。 文件校验: 校验文件的大小、格式等信息,提前过滤掉不符合要求的文件,避免…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
