【有啥问啥】视频插帧算法技术原理详解
视频插帧算法技术原理详解
引言
视频插帧(Video Interpolation)技术,作为计算机视觉领域的一项重要应用,旨在通过算法手段在已有的视频帧之间插入额外的帧,从而提升视频的帧率,使其看起来更加流畅。这一技术不仅广泛应用于电影特效、视频游戏、运动捕捉等领域,还随着计算机视觉和深度学习技术的飞速发展,不断取得新的突破。本文将全面而深入地介绍插帧算法的技术原理,涵盖其发展历程、核心原理、常用方法、实现细节以及应用领域,以期为相关领域的从业人员和研究人员提供有价值的参考。
视频插帧的核心原理
视频插帧算法的核心在于如何在已有的视频帧之间插入额外的帧,以增加视频的帧率。帧率,即每秒显示的帧数,是衡量视频流畅度的重要指标。传统的帧率转换方法主要分为不考虑物体运动信息的组合法和考虑物体运动信息的补偿插值法。
-
组合法
- 帧重复法:这是最简单的方法,直接复制前后帧作为中间帧。然而,这种方法会导致画面卡顿,尤其是在快速运动的场景中,重复的帧会让观众明显感觉到不自然,极大地影响观看体验。
- 帧平均法:对前后帧进行加权平均,生成中间帧。这种方法在一定程度上提高了流畅度,但由于是简单的平均操作,可能导致画面模糊。尤其是在物体边缘和细节处,平均后的效果会丢失很多重要的信息。
- 时域线性/非线性插帧法:通过线性或非线性插值方法生成中间帧。线性插值是在时间轴上进行简单的比例计算,而非线性插值则可以采用更复杂的函数来拟合中间帧。这种方法的效果优于前两种方法,但仍受限于运动信息的缺失,在处理复杂运动场景时可能会出现不准确的情况。
-
补偿插值法
- MEMC(Motion Estimation and Motion Compensation):运动估计和运动补偿技术的结合,通过预测物体的运动轨迹,生成更加逼真的中间帧。首先进行运动估计,确定物体在相邻帧之间的位移和运动方向,然后根据这些信息进行运动补偿,将物体在前后帧中的位置进行调整,从而生成中间帧。这种方法能够较好地处理物体的运动,但对运动估计的准确性要求较高,一旦估计出现偏差,可能会导致插帧效果不佳。
- 光流法:通过分析相邻帧之间的像素变化,推测出像素点在下一帧中的位置,从而生成插值帧。光流不仅考虑了像素的位移,还考虑了像素的运动速度和方向。这种方法能够处理复杂的运动场景,例如物体的旋转、变形等。然而,光流法计算复杂度较高,需要大量的计算资源和时间,这限制了它在实时应用中的使用。
常用的插帧算法
随着计算机视觉和深度学习技术的不断发展,插帧算法也经历了从传统方法到深度学习方法的转变。以下将详细介绍几种常用的插帧算法。
-
基于光流的方法
光流法是一种基于像素运动的插帧算法,通过分析相邻帧之间的像素变化,推测出像素点在下一帧中的位置。常用的光流方法包括 Lucas-Kanade 光流法、Horn-Schunck 光流法等。
Lucas-Kanade 光流法是一种局部光流估计方法,它假设在一个小的邻域内,像素的运动是一致的。通过求解一组线性方程,可以得到该邻域内的光流向量。这种方法计算速度较快,但对于大运动和复杂场景的处理能力有限。
Horn-Schunck 光流法是一种全局光流估计方法,它通过最小化光流的平滑性约束和图像亮度恒定约束来求解光流场。这种方法能够处理更复杂的运动场景,但计算复杂度较高。
这些方法在插帧领域取得了显著的效果,但受限于计算复杂度和对光照变化的敏感性。在光照变化较大的情况下,光流的估计可能会出现偏差,从而影响插帧的效果。
-
基于深度学习的方法
近年来,深度学习方法在视频插帧领域取得了巨大的成功。通过使用卷积神经网络(CNN)等深度学习模型,可以学习到视频中的时空特征,并生成逼真的插值帧。以下将介绍几种基于深度学习的插帧算法。
-
Super SloMo:一种基于深度学习的视频插帧模型,能够处理大运动和复杂遮挡的场景。该模型通过引入自适应卷积核和双向光流估计,实现了对复杂运动场景的高效处理。自适应卷积核可以根据不同的输入动态调整其权重,从而更好地适应不同的运动模式。双向光流估计则可以同时考虑前向和后向的光流信息,提高光流估计的准确性。
-
DAIN:深度自适应插帧网络,通过自适应卷积核生成高质量的插值帧。DAIN 模型在光流估计的基础上,进一步考虑了物体的加速运动,从而提高了插帧的准确性和稳定性。它通过学习一个深度自适应卷积核,能够根据不同的输入自动调整其权重,以更好地适应不同的运动和纹理模式。
-
-
Quadratic Video Interpolation
Quadratic Video Interpolation(QVI)方法考虑了视频中帧间物体运动的加速度信息,采用匀加速运动模型进行插帧。该方法包括两个关键模块:quadratic flow prediction 模块和 flow reversal 模块。
quadratic flow prediction 模块通过分析相邻帧之间的像素变化,预测出物体的运动轨迹和加速度信息。然后,根据这些信息生成一个二次函数来描述物体的运动。flow reversal 模块则用于反转光流,以确保生成的插值帧在时间上的连续性。
通过这两个模块,QVI 方法能够更准确地估计物体的运动轨迹,并生成高质量的插值帧。尤其在处理快速运动和复杂运动场景时,QVI 方法能够更好地保持画面的清晰度和流畅度。
实现细节
在实际应用中,插帧算法的实现通常涉及以下几个步骤:
- 预处理:对输入视频进行预处理,包括解码、缩放、归一化等操作。解码是将视频文件从压缩格式转换为可处理的图像序列。缩放可以根据需要调整视频的分辨率,以适应不同的计算资源和应用需求。归一化则是将像素值归一化到特定的范围,例如[0,1],以便于后续的计算和处理。
- 光流估计:使用光流算法或深度学习模型估计相邻帧之间的光流。光流估计的准确性对插帧效果至关重要。在选择光流算法时,需要考虑计算复杂度、准确性和对不同场景的适应性。深度学习模型通常能够提供更准确的光流估计,但需要大量的训练数据和计算资源。
- 运动补偿:根据估计的光流对前后帧进行运动补偿,生成中间帧的初始估计。运动补偿的目的是使生成的中间帧与前后帧在视觉上保持一致。通过将前后帧中的像素根据光流进行位移,可以得到中间帧的初步估计。然而,这个估计可能存在一些误差和不连续的地方,需要进一步的处理。
- 帧合成:对初始估计的中间帧进行后处理,如中值滤波、自适应卷积等,以生成高质量的插值帧。中值滤波可以去除中间帧中的噪声和椒盐噪声,提高画面的清晰度。自适应卷积则可以根据不同的局部特征调整卷积核的权重,以更好地适应不同的运动和纹理模式。后处理步骤的目的是消除插值帧中的噪声和伪影,提高画面的清晰度和逼真度。
- 后处理:对生成的插值帧进行进一步的处理,如去噪、锐化等,以优化最终的插帧效果。去噪可以去除插值帧中的噪声,提高画面的质量。锐化则可以增强画面的边缘和细节,使画面更加清晰。
以下是一个基于 PyTorch 和 Super SloMo 模型的插帧算法示例代码框架(注意:实际代码需要根据 Super SloMo 模型的具体实现进行调整):
import torch
import torchvision.io as io
import torchvision.transforms as transforms
from super_slomo_model import SuperSloMo # 假设 SuperSloMo 模型已经定义好,并包含必要的预处理和后处理步骤# 加载模型
model = SuperSloMo()
model.load_state_dict(torch.load('super_slomo_model.pth'))
model.eval()# 读取视频帧
def extract_frames_from_video(video_path, frame_rate=30):"""从视频文件中提取帧序列:param video_path: 视频文件路径:param frame_rate: 提取帧的帧率:return: 帧序列,形状为 (T, H, W, C)"""frames, _, info = io.read_video(video_path, pts_unit='sec')frames = frames.permute(0, 3, 1, 2) # 调整维度顺序为 (T, C, H, W)return frames# 对帧序列进行预处理(如缩放、归一化等)
def preprocess_frames(frames, resize_size=(256, 256)):"""对帧序列进行预处理:param frames: 输入帧序列,形状为 (T, C, H, W):param resize_size: 缩放后的尺寸:return: 预处理后的帧序列"""transform = transforms.Compose([transforms.Resize(resize_size),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])frames = transform(frames)return frames# 将帧序列转换为模型输入格式(如增加 batch 维度、调整维度顺序等)
def prepare_input_for_model(frames):"""准备模型输入:param frames: 输入帧序列,形状为 (T, C, H, W):return: 模型输入,形状为 (1, T, C, H, W)"""frames = frames.unsqueeze(0) # 增加 batch 维度return frames# 进行插帧
def interpolate_frames(model, input_frames):"""使用模型进行插帧:param model: 插帧模型:param input_frames: 输入帧序列,形状为 (1, T, C, H, W):return: 插值后的帧序列"""with torch.no_grad():output_frames = model(input_frames)return output_frames# 将插值帧还原为视频帧格式(如去除 batch 维度、调整维度顺序等)
def restore_frames_from_output(output_frames):"""还原插值帧:param output_frames: 插值后的帧序列,形状为 (1, T, C, H, W):return: 还原后的帧序列,形状为 (T, H, W, C)"""output_frames = output_frames.squeeze(0) # 去除 batch 维度output_frames = output_frames.permute(0, 2, 3, 1) # 调整维度顺序为 (T, H, W, C)return output_frames# 对插值帧进行后处理(如去噪、锐化等)
def postprocess_frames(frames):"""对插值帧进行后处理:param frames: 插值后的帧序列,形状为 (T, H, W, C):return: 后处理后的帧序列"""# 这里可以添加去噪、锐化等后处理步骤return frames# 将处理后的帧序列保存为视频文件
def save_frames_to_video(frames, output_path, frame_rate=30):"""将帧序列保存为视频文件:param frames: 帧序列,形状为 (T, H, W, C):param output_path: 输出视频文件路径:param frame_rate: 输出视频的帧率"""frames = frames.permute(0, 3, 1, 2) # 调整维度顺序为 (T, C, H, W)io.write_video(output_path, frames, frame_rate)# 主流程
if __name__ == "__main__":# 读取视频帧frames = extract_frames_from_video('input_video.mp4')# 对帧序列进行预处理frames = preprocess_frames(frames)# 将帧序列转换为模型输入格式input_frames = prepare_input_for_model(frames)# 进行插帧output_frames = interpolate_frames(model, input_frames)# 将插值帧还原为视频帧格式restored_frames = restore_frames_from_output(output_frames)# 对插值帧进行后处理final_frames = postprocess_frames(restored_frames)# 将处理后的帧序列保存为视频文件save_frames_to_video(final_frames, 'output_video.mp4')
应用领域
视频插帧技术具有广泛的应用领域,包括但不限于:
- 电影特效:在电影制作中,通过插帧技术可以提高画面的流畅度和真实感,使动作场景更加逼真。例如,在高速运动的镜头中,插帧可以让观众更清晰地看到物体的运动轨迹和细节,增强视觉冲击力。同时,插帧技术还可以用于创造特殊的视觉效果,如慢动作、快动作等。
- 视频游戏:在游戏开发中,插帧技术可以减少画面的卡顿和延迟,提高游戏的流畅度和玩家的体验。特别是在高帧率的游戏中,插帧可以让画面更加平滑,减少视觉疲劳。此外,插帧技术还可以用于游戏的实时渲染,提高游戏的图形质量和性能。
- 运动捕捉:在运动捕捉领域,插帧技术可以在有限的运动捕捉数据中生成更多的帧,使虚拟角色的动作更加连贯和真实。通过插帧,可以填补运动捕捉数据中的空白,提高动作的流畅度和自然度。同时,插帧技术还可以用于运动捕捉数据的修复和优化,提高数据的质量和可用性。
- 视频压缩:通过传输关键帧和插帧算法合成的中间帧,可以减少通信带宽的占用,提高视频传输的效率。在视频压缩中,关键帧是指包含完整图像信息的帧,而中间帧则可以通过插帧算法从关键帧中生成。这样可以大大减少视频数据的传输量,提高视频传输的速度和质量。
- 慢动作视频:插帧技术可以生成慢动作视频,同时保持运动模糊效果,使慢动作场景更加自然和逼真。通过插帧,可以在不降低视频分辨率的情况下,将视频的帧率提高到原来的几倍甚至几十倍,从而实现慢动作效果。同时,插帧技术还可以根据需要调整运动模糊的程度,使慢动作视频更加符合实际的视觉感受。
结论与展望
视频插帧算法作为计算机视觉领域的一项重要技术,通过插入额外的帧来提高视频的帧率,从而使其看起来更加流畅。从传统的组合法到补偿插值法,再到基于光流和深度学习的方法,插帧算法经历了不断的发展和优化。未来,随着计算机视觉和深度学习技术的不断进步,插帧算法将在更多领域得到应用和发展。
一方面,我们可以期待更加高效的插帧算法的出现。目前,一些深度学习方法虽然在插帧效果上取得了很大的突破,但计算复杂度较高,难以在实时应用中广泛使用。未来的研究可以致力于开发更加高效的深度学习模型,或者结合传统方法和深度学习方法的优势,提高插帧算法的效率。
另一方面,我们也可以期待插帧算法在准确性和稳定性方面的进一步提高。在处理复杂运动场景和光照变化较大的情况下,现有的插帧算法仍然存在一些挑战。未来的研究可以深入探索更加准确的运动估计和补偿方法,以及更好地处理光照变化的技术,提高插帧算法的准确性和稳定性。
同时,我们还可以期待插帧算法在更多领域的创新应用。随着虚拟现实、增强现实等技术的发展,插帧算法可以为这些领域提供更加流畅和逼真的视觉体验。此外,插帧算法还可以与其他视频处理技术相结合,如视频编码、视频增强等,为视频处理领域带来更多的创新和突破。
总之,视频插帧算法作为一项具有广阔应用前景的技术,将在未来的发展中不断创新和进步,为我们带来更加精彩的视觉体验。
相关文章:
【有啥问啥】视频插帧算法技术原理详解
视频插帧算法技术原理详解 引言 视频插帧(Video Interpolation)技术,作为计算机视觉领域的一项重要应用,旨在通过算法手段在已有的视频帧之间插入额外的帧,从而提升视频的帧率,使其看起来更加流畅。这一技…...
Leetcode148,109以及二者的合并 -> Tencent面试算法题 - 无序双向链表转BST
根源简述 这道题是腾讯在2024/8/30考的一道面试题,整体来说,难度不大,就是代码量稍稍有点儿大,让我们一起来看一下吧 题目描述 整数无序双向链表能否转BST(二叉搜索树),如果能,怎么转…...
【蓝桥杯选拔赛真题77】python计算小球 第十五届青少年组蓝桥杯python选拔赛真题 算法思维真题解析
目录 python计算小球 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python计算小球 第十五届蓝桥杯青少年组python比赛选拔赛真题 一、题目要…...
获取Hive表备注
DESCRIBE EXTENDED 表名;先获取Detailed Table Information这行的data_type字段数据,进行正则匹配,拿到表备注,如下: String str ReUtil.get("parameters:\\{(?!.*?\\().*transient_lastDdlTime.*?comment(.*?)\\}&quo…...
10.30学习
一、科学计数法 C语言中的科学计数法主要用于表示非常大或非常小的浮点数,它遵循以下格式: 1. E或e表示指数: 科学计数法中的E或e用来表示“指数”(Exponent)。例如, 1.23e4 或 1.23E4 表示 1.23 * 10^4…...
什么是栈溢出
一、什么是栈溢出 栈溢出(Stack Overflow)就是指在程序运行过程中,往栈里存放的数据超过了栈所能容纳的最大容量,从而导致程序出现异常行为的情况。这就好比一个箱子本来只能装一定数量的物品,硬要往里面塞更多的东西&…...
在linux中arm-linux-gcc和/usr/bin/gcc有啥区别
在Linux中,arm-linux-gcc和/usr/bin/gcc都是编译器,但它们之间存在显著的区别,主要体现在编译目标、使用场景以及编译生成的二进制文件的可执行性上。而软链接则是Linux文件系统中的一种特殊文件类型,用于创建一个文件的别名。 a…...
常用环境部署(二十二)——MySQL的数据库迁移到另一个机器上
1、导出原数据库的数据 mysqldump -u [用户名] -p[密码] [数据库名] > database_dump.sql 命令示例: mysqldump -u root -p123456 wd > /opt/wd.sql 2、在新机器上创建数据库 mysql -u [用户名] -p -e "CREATE DATABASE [新数据库名]" 命令示…...
两台主机只能单方向ping通
可能性比较大的原因时ping不通的那台主机安装了个人防火墙。 在共享上网的机器中,出于安全考虑,大部分主机都安装个人防火墙软件。几乎所有个人防火墙软件默认不允许其他机器ping本机。一般的做法是将来自外部的ICMP请求报文滤掉,对本机出去的…...
redis windows 5.0 下载
Redis 简介 Redis 是一个高性能的 key-value 数据库,广泛应用于缓存、消息队列、实时分析等场景。它支持多种数据结构,如字符串、哈希、列表、集合、有序集合等,并且提供了丰富的操作命令,能够满足各种复杂的数据处理需求。 下载…...
视频转gif怎么转换?6种视频格式转换简单方法分享,附操作截图!
gif动图凭借其简洁而生动的特点,已成为互联网交流中不可或缺的一部分。尽管gif和视频在技术上有所不同,但两者都能以短小的帧展现动作,而gif通常不带声音,具备循环播放的特性。因此,出于创建gif动图、存储更多媒体文件…...
StructRAG简介
StructRAG是一种新型的框架,旨在提升大型语言模型(LLMs)在知识密集型推理任务中的性能。它通过推理时的混合信息结构化机制,根据任务需求以最合适的格式构建和利用结构化知识。 以下是StructRAG的核心组成部分和工作流程ÿ…...
java脚手架系列12-mongoDB
之所以想写这一系列,是因为之前工作过程中有几次项目是从零开始搭建的,而且项目涉及的内容还不少。在这过程中,遇到了很多棘手的非业务问题,在不断实践过程中慢慢积累出一些基本的实践经验,认为这些与业务无关的基本的…...
python四舍五入保留两位小数
在 Python 中,你可以使用内置的 round() 函数来对数字进行四舍五入并保留两位小数。round() 函数有两个参数:要四舍五入的数字和要保留的小数位数。以下是一个简单的示例: # 示例数字 number 3.14159# 四舍五入保留两位小数 rounded_number…...
期权懂|有什么期权交易策略能够稳赚不赔的?
期权小懂小编每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯! 有什么期权交易策略能够稳赚不赔的? 期权交易具有风险性,没有任何一种策略能够保证稳赚不赔。 以下是一些常见的期权交易策略,虽不能保证盈利&#…...
笔记本脱机状态
先是显示脱机,请尝试其他方法登录 1.按照联想客服,进入高级选项里面,清除两个更新项目,没有卸载成功 2.安装wepe,先是能检测到U盘,但是进不去,然后我淘宝淘帮我做盘,我自己重新装了一…...
Node.js:模块 包
Node.js:模块 & 包 模块module对象 包npm安装包配置文件镜像源 分类 模块 模块化是指解决一个复杂问题时,自顶向下逐层把系统划分成若干模块的过程。对于整个系统来说,模块是可组合、分解和更换的单元。 简单来说,就是把一个…...
油动无人机动力测试台-60公斤级-Flight Stand 60 ICE
产品简介 通过Flight Stand 60 ICE测试台对内燃机和螺旋桨的拉力,扭矩,转速,燃油流量,温度,功率和螺旋桨效率的测量,帮助用户精准地描述和评估其性能参数,以不断地优化和提升燃油动力系统性能。…...
给grasshopper中的python脚本电池加个标签
ghenv.Component.Message test使用python脚本创建的电池,也可以保存起来。 File – Create User Object...
别被忽悠了 Lua 数组真的也可以从 0 开始索引?
先前我说 Lua 数组从 1 开始不太爽,很多人来纠正我说也可以从 0 开始,比如: local m { [0] 100, 101, 102, 103 }然后访问时 m[0] 也可以正常访问到第 0 个元素,所以 “Lua 给你充分自由度,让你可以从任意下标索引数…...
docker占用磁盘过多问题
我在windows系统上用docker,安装在C盘环境下,我发现C盘占用了大量的空间,查找后发现是docker的映像文件占用的,于是开始清理,中间还踩个坑,记录一下,下次需要的时候方便找。 踩坑 我本想移动映…...
[实时计算flink]使用Python依赖
您可以在Flink Python作业中使用自定义的Python虚拟环境、第三方Python包、JAR包和数据文件等,本文为您介绍如何在Python作业中使用这些依赖。 使用自定义的Python虚拟环境 说明 VVR 4.x仅支持3.7版本的Python虚拟环境,VVR 6.x及以上的版本无此限制&a…...
MySql如何实现分布式锁
本篇我们使用mysql实现一个分布式锁。 环境:mysql8,navicat,maven,springboot2.3.11,mybatis-plus 分布式锁的功能 1,分布式锁使用者位于不同的机器中,锁获取成功之后,才可以对共享资源进行操作 2,锁具有重入的功能:即一个使用…...
「行内揭秘」 SQLynx数据库界的“小众宝藏”?
数据库界的“小众宝藏”?Navicat老大哥地位稳如泰山,但这位“SQLynx”小弟也不容小觑!👀 别看它小众,SQLynx在处理数据库事务上那可是丝毫不含糊,无论你是Windows Linux和Mac,甚至银河麒麟统信都…...
【已解决】【MySQL】IDEA配置数据库 报错 未配置SQL方言 无法使用SQL提示
IDEA配置数据库的步骤 下载插件 添加数据源 新建--->选择数据源MySQL 页面展示: 主机名:一般都是localhost不用改端口:填写自己的端口号用户:填写自己的用户名密码:填写自己设置的密码数据库:填写需要…...
Android 开发 调节声音 SeekBar自定义样式
效果图 xml布局 mipmap/seekbar图片随意一张图都可以,这里我的图就不贴出来了 <SeekBarandroid:id"id/seekBar"android:layout_marginLeft"8dp"android:layout_width"377dp"android:layout_height"8dp"android:layou…...
UART-通用异步收发器
1. UART的基本工作原理 UART通信主要有两个部分构成:发送器和接收器,也就是我们常见的(RX接收,TX发送)两个独立的线路来实现数据的双向传输,由于是异步的,UART并不需要时钟信号,而是…...
Linux——— 信号
文章目录 前言:引入信号生活中的例子信号概念见一见Linux中的信号 浅度理解信号信号处理(浅谈):如何自定义捕捉 信号保存(浅谈) 信号产生系统调用产生异常产生:浅谈除0异常浅谈解引用野指针异常Core &&…...
安全见闻-web安全
web安全 一、web程序简介 1. Web程序的基本构成 2. 工作流程 3. 安全性 二、JavaScript代码库 1. 代码库的概念和用途 2. 常见的代码库 三、框架 1. 常见的前端框架 2. 常见的后端框架 四、数据库 1. 数据库的分类 2. 数据库的潜在漏洞 3. 学习数据库的重要性 五、…...
网站推广软件哪个最实惠/怎么投放广告
分类 爬虫分为定向与不定向基本操作 简单来说就是通过指定的url取出数据发送http请求:基于正则表达式匹配获取内容用BeautifulSoup可以先用requests获取网页内容 之后用BeautifulSoup解析 BeautifulSoup(text,http.parser) 之后可以用find寻找对应项,get…...
电大网上作业代做网站/百度竞价推广收费
作为一种定期清理无效数据的重要机制,主键失效存在于大多数缓存系统中,Reids也不例外。在Redis提供的诸多命令中,EXPIRE、EXPIREAT、PEXPIRE、PEXPIREAT以及SETEX和PSETEX均可以用来设置一条Key-Value对的失效时间,而一条Key-Valu…...
家纺公司网站模版/电视剧排行榜百度搜索风云榜
JavaScript 实现点击/关闭全屏 思路 那么,问题我们知道了。解决问题的思路是怎么样的呢? 我们获取到图片元素的 DOM 节点 我们调用全屏的函数进行全屏展示 浏览器监听点击事件,当图片是全屏的状态,再次点击图片的时候…...
论述政府门户网站建设的基本意义/国外免费舆情网站有哪些软件
作用:不借助<router-link>实现路由跳转,让路由跳转更加灵活 具体编码: $router.push 想要导航到不同的 URL,则使用 router.push 方法。这个方法会向 history 栈添加一个新的记录,所以,当用户点击浏…...
企业站模板/网络搜索引擎
Redis 慢查询 许多存储系统提供慢查询日志帮助开发和运维人员定位系统的慢操作。慢查询日志就是系统在命令执行前后计算每条命令的执行时间,当超过预设阈值就将这条命令的相关信息记录下来Redis提供了相关的功能。 慢查询的两个配置参数 slowlog-log-slower-thanslo…...
建设牌官方网站/外贸网站优化
文章目录RMySQL连接数据库的代码基本结构【模板】RMySQL连接数据库的代码基本结构【模板】 library(RMySQL) #建立本地连接:获取连接信息,查看database下所有表 con <- dbConnect(MySQL(),host"localhost",dbname"d_sample",user"root…...