Cow Acrobats ( 临项交换贪心 )
题目大意:
N 头牛 , 每头牛有一个重量(Weight)和一个力量(Strenth) , N头牛进行排列 , 第 i 头牛的风险值为其上所有牛总重减去自身力量 , 问如何排列可以使最大风险值最小 , 求出这个最小的最大风险值;
思路:临项交换
邻项交换排序是一种常见的贪心算法,通过比较两个相邻元素交换前后的优劣对整个序列进行排序,从而使得这个序列成为题目所求的最优解。
我们假设前 i 项已经是最优排列 , 且第 i + 1 项和第 i + 2 项当前排列时最优
那么对于第 i + 1 个
resi+1=sum−s2res_{i+1} = sum - s_2resi+1=sum−s2
对于第 i + 2 个
resi+2=sum+s1−w2res_{i+2} = sum + s_1 - w_2resi+2=sum+s1−w2
若我们交换第 i + 1 项 和 第 i + 2 项
那么对于第 i + 1 个
resi+1′=sum−w2res_{i+1}'= sum - w_2resi+1′=sum−w2
对于第 i + 2 个
resi+2′=sum+w1−s2res_{i+2}' = sum + w_1 - s_2resi+2′=sum+w1−s2
在这里我们已经假设交换前为最优状态 , 所以我们根据题目中最大值最小的定义可以得到下面这个式子
max(resi+1,resi+2)<=max(resi+1′,resi+2′)max(res_{i+1} , res_{i+2}) <= max(res_{i+1}' , res_{i+2}')max(resi+1,resi+2)<=max(resi+1′,resi+2′)
转化一下
max(sum−s2,sum+s1−w2)<=max(sum−w2,sum+w1−s2)max(sum - s_2 , sum + s_1 - w_2) <= max(sum - w_2 , sum + w_1 - s_2)max(sum−s2,sum+s1−w2)<=max(sum−w2,sum+w1−s2)
每一项 减去 sum 加上 (s2+w2s_2 + w_2s2+w2)
max(w2,s1+s2)<=max(s2,w1+w2)max(w_2 , s_1 + s_2) <= max(s_2 , w_1 + w_2)max(w2,s1+s2)<=max(s2,w1+w2)
至此 , 我们就推出了我们想要的交换方程
bool cmp(node a,node b){return max(a.x + a.y , b.y) < max(b.x + b.y , a.y) || (max(a.x + a.y , b.y) == max(b.x + b.y , a.y) && a.x + a.y < b.x + b.y);
}
这里等于号要特判 ,不懂的可以看看下面这个博客
浅谈邻项交换排序的应用以及需要注意的问题
当我们排好序后 ,不要忘记我们的问题 , 是要求最小的最大值 ,这是只要遍历所有状态求出最大值即可。
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
typedef long long ll;
const int N = 2e5+10;
const int p = 1e9 + 7;
typedef pair<int,int>PII;
const int inf = 1 << 31 - 1;
const double eps = 1e-9;int n;struct node{int x,y;
}a[N];bool cmp(node a,node b){return max(a.x + a.y , b.y) < max(b.x + b.y , a.y) || (max(a.x + a.y , b.y) == max(b.x + b.y , a.y) && a.x + a.y < b.x + b.y);
}int main(){IOScin >> n;for(int i=1;i<=n;i++){cin >> a[i].x >> a[i].y;}sort(a+1,a+1+n,cmp);int ans = -inf , sum = 0;for(int i=1;i<=n;i++){sum += a[i-1].x;ans = max(ans , sum - a[i].y);}cout << ans ;return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);
相关文章:

Cow Acrobats ( 临项交换贪心 )
题目大意: N 头牛 , 每头牛有一个重量(Weight)和一个力量(Strenth) , N头牛进行排列 , 第 i 头牛的风险值为其上所有牛总重减去自身力量 , 问如何排列可以使最大风险值最小 , 求出这个最小的最大风险值&am…...

MySQL:为什么说应该优先选择普通索引,尽量避免使用唯一索引
前言 在使用MySQL的过程中,随着表数据的逐渐增多,为了更快的查询我们需要的数据,我们会在表中建立不同类型的索引。 今天我们来聊一聊,普通索引和唯一索引的使用场景, 以及为什么说推荐大家优先使用普通索引…...

Spring Cloud alibaba之Feign
JAVA项目中如何实现接口调用?HttpclientHttpclient是Apache Jakarta Common下的子项目,用来提供高效的、最新的、功能丰富的支持Http协议的客户端编程工具包,并且它支持HTTP协议最新版本和建议。HttpClient相比传统JDK自带的URL Connection&a…...

零信任-Google谷歌零信任介绍(3)
谷歌零信任的介绍? "Zero Trust" 是一种网络安全模型,旨在通过降低网络中的信任级别来防止安全威胁。在零信任模型中,不论请求来自内部网络还是外部网络,系统都将对所有请求进行详细的验证和审核。这意味着每次请求都需…...

Numpy基础——人工智能基础
文章目录一、Numpy概述1.优势2.numpy历史3.Numpy的核心:多维数组4.numpy基础4.1 ndarray数组4.2 内存中的ndarray对象一、Numpy概述 1.优势 Numpy(Nummerical Python),补充了Python语言所欠缺的数值计算能力;Numpy是其它数据分析及机器学习库的底层库&…...

电商仓储与配送云仓是什么?
仓库是整个供给链的关键局部。它们是产品暂停和触摸的点,耗费空间和时间(工时)。空间和时间反过来也是费用。经过开发数学和计算机模型来微调仓库的规划和操作,经理能够显著降低与产品分销相关的劳动力本钱,进步仓库空间应用率,并…...

【零基础入门前端系列】—HTML介绍(一)
【零基础入门前端系列】—HTML介绍(一) 一、什么是HTML HTML是用来描述网页的一种语言HTML指的是超文本标记语言:HyperText Markup LanguageHTML不是一种编程语言,而是一种超文本标记语言,标记语言是一套标记标签(ma…...

Elasticsearch索引库和文档的相关操作
前言:最近一直在复习Elasticsearch相关的知识,公司搜索相关的技术用到了这个,用公司电脑配了环境,借鉴网上的课程进行了总结。希望能够加深自己的印象以及帮助到其他的小伙伴儿们😉😉。 如果文章有什么需要…...

使用Python,Opencv检测图像,视频中的猫
使用Python,Opencv检测图像,视频中的猫🐱 这篇博客将介绍如何使用Python,OpenCV库附带的默认Haar级联检测器来检测图像中的猫。同样的技术也可以应用于视频流。这些哈尔级联由约瑟夫豪斯(Joseph Howse)训练…...
浅谈域名和服务器集约化管理的误区
一个正常的网站通常由域名、网站程序、服务器三个部分组成,网站程序由单位开发设计,而域名和服务器则需要租用购买,那么域名和服务器之间的关系是什么?如何实现域名和服务器的有效管理呢? 服务器和域名的关系 服务器…...

迪赛智慧数——柱状图(正负条形图):20212022人才求职最关注的因素
效果图从近两年职场跳槽方向看,相比此前人们对高薪大厂趋之若鹜,如今职场人更关注业务前景。根据相关数据显示,职场人求职最关注的因素中,“薪资福利”权重下降,“个人发展”权重上升,“业务前景”首次进入…...
网络安全-黑帽白帽红客与网络安全法
网络安全-黑帽白帽红客与网络安全法 本章内容较少,因为刚开端。 黑客来源于hacker 指的是信息安全里面,能够自由出入对方系统,指的是擅长IT技术的电脑高手 黑帽黑客-坏蛋,研究木马的,找漏洞的,攻击网络或者…...
Xpath元素定位之同级节点,父节点,子节点
XPath学习:轴(8)——following-siblingXPath 是一门在 XML 文档中查找信息的语言。XPath 可用来在 XML 文档中对元素和属性进行遍历。XPath 是 W3C XSLT 标准的主要元素,并且 XQuery 和 XPointer 同时被构建于 XPath 表达之上。推荐一个挺不错的网站:htt…...
华为OD机试 - 挑选字符串(Python)| 真题+思路+代码
挑选字符串 题目 给定 a-z,26 个英文字母小写字符串组成的字符串 A 和 B, 其中 A 可能存在重复字母,B 不会存在重复字母, 现从字符串 A 中按规则挑选一些字母可以组成字符串 B 挑选规则如下: 同一个位置的字母只能挑选一次, 被挑选字母的相对先后顺序不能被改变, 求最…...

python笔记-- “__del__”析构方法
-#### 1、基本概念(构造函数与析构函数) 特殊函数:由系统自动执行,在程序中不可显式地调用他们 构造函数: 建立对象时对对象的数据成员进行初始化(对象初始化) 析构函数: 对象生命期…...

支付系统核心架构设计思路(万能通用)
文章目录1. 支付系统总览核心系统交互业务图谱2. 核心系统解析交易核心交易核心基础交易类型抽象多表聚合 & 订单关联支付核心支付核心总览支付行为编排异常处理渠道网关资金核算3. 服务治理平台统一上下文数据一致性治理CAS校验幂等 & 异常补偿对账准实时对账DB拆分异…...
python实现mongdb的双活
如何用python实现mongdb的双活,两个数据库实时同步? 可以使用Pymongo库,它可以提供同步的API来实现MongoDB的双活,两个数据库实时同步。还可以使用MongoDB的复制集功能来进行实时同步。 Pymongo库提供什么同步的API来实现MongoD…...

LeetCode-110. 平衡二叉树
目录题目分析递归法题外话题目来源 110. 平衡二叉树 题目分析 平很二叉树:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。 二叉树节点的深度和二叉树节点的高度 递归法 递归三步曲 1.明确递归函数的参数和返回值 参数:当前传入节点。 返回值…...

Python蓝桥杯训练:基本数据结构 [链表]
Python蓝桥杯训练:基本数据结构 [链表] 文章目录Python蓝桥杯训练:基本数据结构 [链表]一、链表理论基础知识二、有关链表的一些常见操作三、力扣上面一些有关链表的题目练习1、[移除链表元素](https://leetcode.cn/problems/remove-linked-list-element…...
华为OD机试 - 找字符(Python)| 真题+思路+代码
找字符 题目 给定两个字符串, 从字符串2中找出字符串1中的所有字符, 去重并按照 ASCII 码值从小到大排列。 输入 字符范围满足 ASCII 编码要求, 输入字符串1长度不超过1024, 字符串2长度不超过100。 输出描述 按照 ASCII 由小到大排序 示例一 输入 bach bbaaccddf…...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...