day58 图论章节刷题Part09(dijkstra(堆优化版)、Bellman_ford 算法)
dijkstra(堆优化版)
朴素版的dijkstra解法的时间复杂度为 O(n^2),时间复杂度只和 n(节点数量)有关系。如果n很大的话,可以从边的角度来考虑。因为是稀疏图,从边的角度考虑的话,我们在堆优化算法中最好使用邻接表来存储图,这样不会造成空间的浪费。同时直接遍历边,通过堆(小顶堆)对边进行排序,选择距离源点最近的节点。
时间复杂度:O(ElogE) ,E 为边的数量- logE是小顶堆的时间复杂度
空间复杂度:O(N + E) ,N 为节点的数量,邻接表:O(n+e)、最短距离数组:O(n)、访问标记数组:O(n)、优先队列:O(n)
之前在求top K问题时应用过小顶堆,这里再复习一下。
小顶堆
小顶堆是一种特殊的完全二叉树,其中每个父节点的值都不大于其子节点的值。这种特性使得堆的根节点始终是堆中的最小值,非常适合用于实现优先队列等数据结构。
创建一个优先队列,并进行维护
PriorityQueue priorityQueue = new PriorityQueue<>();
问题应用:
- 求解 Top K 问题:小顶堆可以用于求解 Top K 问题,即从 N 个元素中找出最大的 K 个元素。通过维护一个大小为 K 的小顶堆(当小顶堆中已经有K个元素时,新加入的元素如果大于最小的顶端数据,则将其加入并丢掉顶端数据),可以高效地解决这个问题。
- 合并多个有序数组:通过将每个数组的首个元素放入堆中,每次取出最小值并将其所在数组的下一个元素加入堆中,可以高效地完成合并。
代码实现
import java.util.*;//边的结构:节点和节点间的权重
class Edge{int to,val;Edge(int to,int val){this.to=to;this.val=val;}
}//距离对的结构:节点和节点到源点的距离
class Pair{int first,second;Pair(int first,int second){this.first=first;this.second=second;}
}//重写comparator类作为接口
class MyComparition implements Comparator<Pair>{@Overridepublic int compare(Pair l,Pair r){return Integer.compare(l.second,r.second);}}public class Main{public static void main (String[] args) {Scanner scan=new Scanner(System.in);int n=scan.nextInt();int m=scan.nextInt();List<List<Edge>> grid=new ArrayList<>(n+1);for(int i=0;i<=n;i++){grid.add(new ArrayList<>());}for(int i=0;i<m;i++){int s=scan.nextInt();int t=scan.nextInt();int k=scan.nextInt();grid.get(s).add(new Edge(t,k));}int[] minDist=new int[n+1];Arrays.fill(minDist,Integer.MAX_VALUE);boolean[] visited=new boolean[n+1];//源点到源点的距离为0minDist[1]=0;PriorityQueue<Pair> pq=new PriorityQueue<>(new MyComparition());pq.add(new Pair(1,0));while(!pq.isEmpty()){Pair cur=pq.poll();if(visited[cur.first]) continue;else visited[cur.first]=true;for(Edge edge:grid.get(cur.first)){if(!visited[edge.to] && minDist[cur.first]+edge.val<minDist[edge.to])minDist[edge.to]=minDist[cur.first]+edge.val;pq.add(new Pair(edge.to,minDist[edge.to]));}}if(minDist[n]!=Integer.MAX_VALUE) System.out.println(minDist[n]);else System.out.println(-1);}
}
Bellman_ford 算法-94. 城市间货物运输 I
本题依然是单源最短路问题,求从节点1 到节点n 的最小费用。 但本题不同之处在于边的权值有负数。
Bellman_ford 算法
Bellman_ford算法的核心思想是 对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。
“松弛”-如果通过A到B这条边可以获得更短的到达B节点的路径,即如果 minDist[B] > minDist[A] + value,那么我们就更新 minDist[B] = minDist[A] + value。
Bellman_ford算法采用了动态规划的思想,即:将一个问题分解成多个决策阶段,通过状态之间的递归关系最后计算出全局最优解。
对所有边松弛一次,相当于计算起点到达与起点一条边相连的节点的最短距离。所以需要对所有边松弛n-1次才能得到起点到终点的最短距离。
(有一些题目可能不需要n-1次就能找到最短路径,但是n-1次能保证找到各类题目从原点到所有点的最短路径)
时间复杂度: O(N * E) , N为节点数量,E为图中边的数量
空间复杂度: O(N) ,即 minDist 数组所开辟的空间
和dijkstra算法的区别是,dijkstra算法是从源点开始累加最小路径进行推演的;Bellman_ford 算法则相当于不断的累加路径,如果新的路径小于原值就更新。
代码如下:
import java.util.*;
class Edge{int from,to,val;public Edge(int from,int to,int val){this.from=from;this.to=to;this.val=val;}
}class Main{public static void main (String[] args) {Scanner scan=new Scanner(System.in);int n=scan.nextInt();int m=scan.nextInt();List<Edge> edges=new ArrayList<>();for(int i=0;i<m;i++){int from=scan.nextInt();int to=scan.nextInt();int val=scan.nextInt();edges.add(new Edge(from,to,val));}int[] minDist=new int[n+1];Arrays.fill(minDist,Integer.MAX_VALUE);minDist[1]=0;//进行n-1次松弛for(int i=1;i<n;i++){for(Edge edge:edges){if(minDist[edge.from]!=Integer.MAX_VALUE && minDist[edge.from]+edge.val<minDist[edge.to]){minDist[edge.to]=minDist[edge.from]+edge.val;}}}if(minDist[n]==Integer.MAX_VALUE) System.out.println("unconnected");else System.out.println(minDist[n]);}
}
相关文章:
day58 图论章节刷题Part09(dijkstra(堆优化版)、Bellman_ford 算法)
dijkstra(堆优化版) 朴素版的dijkstra解法的时间复杂度为 O(n^2),时间复杂度只和 n(节点数量)有关系。如果n很大的话,可以从边的角度来考虑。因为是稀疏图,从边的角度考虑的话,我们在堆优化算法中最好使用…...
【计网不挂科】计算机网络期末考试——【选择题&填空题&判断题&简述题】试卷(1)
前言 大家好吖,欢迎来到 YY 滴计算机网络 系列 ,热烈欢迎! 本章主要内容面向接触过C的老铁 本博客主要内容,收纳了一部门基本的计算机网络题目,供yy应对期中考试复习。大家可以参考 本章是去答案版本。带答案的版本在下…...
智能出行助手:SpringBoot共享汽车管理平台
1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理共享汽车管理系统的相关信息成为必然。开发…...
【月之暗面kimi-注册/登录安全分析报告】
前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞 …...
Flink实现实时数据处理
代码如下: #!/usr/bin/python # -*- coding: UTF-8 -*-from pyflink.datastream import StreamExecutionEnvironment from pyflink.table import StreamTableEnvironment, EnvironmentSettings, DataTypes# 初始化执行环境 s_env StreamExecutionEnvironment.get_…...
11.9.2024刷华为
文章目录 HJ31 单词倒排HJ32 密码提取语法知识记录 傻逼OD题目又不全又要收费,看毛线,莫名奇妙 HW这叼机构别搁这儿害人得不得? 我觉得我刷完原来的题目 过一遍华为机考的ED卷出处,就行了 HJ31 单词倒排 游戏本做过了好像 HJ3…...
Chromium 中chrome.system.storage扩展接口定义c++
一、chrome.system.storage 您可以使用 chrome.system.storage API 查询存储设备信息,并在连接和分离可移动存储设备时收到通知。 权限 system.storage 类型 EjectDeviceResultCode 枚举 "success" 移除命令成功执行 - 应用可以提示用户移除设备。…...
【Qt聊天室客户端】登录窗口
1. 验证码 具体实现 登录界面中创建验证码图片空间,并添加到布局管理器中 主要功能概述(创建一个verifycodewidget类专门实现验证码操作) 详细代码 // 头文件#ifndef VERIFYCODEWIDGET_H #define VERIFYCODEWIDGET_H#include <QWidget>…...
如何显示模型特征权重占比图【数据分析】
可视化模型的特征权重 1、流程 1、导入库: numpy:用于处理数组和矩阵。 matplotlib.pyplot:用于绘图。 sklearn.datasets:用于加载数据集。 sklearn.ensemble.RandomForestClassifier:用于训练随机森林模型。2、加载数据集: 使用load_iris函数加载Iris数据集。3、训练模…...
Ubuntu24安装MySQL
下载deb包: 先更新系统包: sudo apt update sudo apt update -y下载mysql: wget https://dev.mysql.com/get/mysql-apt-config_0.8.17-1_all.deb 安装deb包: sudo dpkg -i mysql-apt-config_0.8.17-1_all.deb目前mysql还没有正式支持Ubun…...
微服务架构面试内容整理-Eureka
Spring Cloud Netflix 是一个为构建基于 Spring Cloud 的微服务应用提供的解决方案,利用 Netflix 的开源组件来实现常见的分布式系统功能。以下是 Spring Cloud Netflix 的一些主要组件和特点: 服务注册与发现:Eureka 是一个 RESTful 服务,用于注册和发现微服务。服务实例在…...
qt QErrorMessage详解
1、概述 QErrorMessage是Qt框架中用于显示错误消息的一个对话框类。它提供了一个简单的模态对话框,用于向用户显示错误或警告消息。QErrorMessage通常用于应用程序中,当需要向用户报告错误但不希望中断当前操作时。它提供了一个标准的错误消息界面&…...
SpringBoot 将多个Excel打包下载
在Spring Boot应用中,如果你需要将多个Excel文件打包成一个ZIP文件并提供下载,你可以使用一些Java库来帮助完成这个任务。这里我将展示如何使用Apache POI来生成Excel文件,以及使用Java.util.zip来创建ZIP文件,并通过Spring Boot的…...
分页存储小总结
知识点: 什么是分页存储? 将内存空间分为一个个大小相等的分区(比如:每个分区4KB),每个分区就是一个“页框”(页框页帧内存块物理块物理页面)。每个页框有一个编号,即“页框号”(…...
Star-CCM+应用篇之动力电池温度场仿真操作流程与方法
1 动力电池温度场仿真项目 电池包内模组温度分布、电芯温度分布、温升速率、充电时间等。 2 动力电池温度场仿真分析流程图 图1 电池包热流场分析流程 3 动力电池温度场仿真参数需求 类别...
Spring Boot应用开发:从入门到精通
Spring Boot应用开发:从入门到精通 Spring Boot是Spring框架的一个子项目,旨在简化Spring应用的初始搭建和开发过程。通过自动配置和约定大于配置的原则,Spring Boot使开发者能够快速构建独立的、生产级别的Spring应用。本文将深入探讨Sprin…...
【JAVA项目】基于jspm的【医院病历管理系统】
技术简介:采用jsp技术、MySQL等技术实现。 系统简介:通过标签分类管理等方式,实现管理员;个人中心、医院公告管理、用户管理、科室信息管理、医生管理、出诊信息管理、预约时间段管理、预约挂号管理、门诊病历管理、就诊评价管理、…...
Python中的常见配置文件写法
在软件开发过程中,开发者常常需要利用一些固定的参数或常量。对于这些相对恒定且频繁使用的元素,一种常见的做法是将它们集中存储在一个特定的文件中,以避免在多个模块代码中重复定义,从而维护核心代码的清晰度和整洁性。 具体而…...
语义分割实战——基于PSPnet神经网络动物马分割系统源码
第一步:准备数据 动物马分割数据,总共有328张图片,里面的像素值为0和1,所以看起来全部是黑的,不影响使用 第二步:搭建模型 psp模块的样式如下,其psp的核心重点是采用了步长不同,po…...
Python+Appium编写脚本
一、环境配置 1、安装JDK,版本1.8以上 2、安装Python,版本3.x以上,用来解释python 3、安装node.js,版本^14.17.0 || ^16.13.0 || >18.0.0,用来安装Appimu Server 4、安装npm,版本>8,用…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
