网上搞钱的野路子/常德seo
文末有免费工具可在线体验,或者网络搜索关键词“思通开源AI能力平台”
一、扫描与图像预处理
技术实现过程
在纸质档案的数字化过程中,首先需要使用高精度扫描仪对纸质文档进行扫描,生成高清的数字图像。这一步骤是整个OCR流程的基础,图像的质量直接影响到后续识别的准确性。图像预处理技术包括去噪、增强对比度、校正倾斜和图像增强等,这些操作有助于提高图像质量,减少识别错误。
如图所示,这是图像增强对比之前的照片
如图所示,采用直方图均衡化算法对图像增强对比之后的照片
核心技术要点
图像质量提升:在数字档案馆中,图像质量提升是确保OCR识别准确性的关键。通过去噪声、灰度化和二值化处理,以及对比度调整等步骤,可以有效提高图像的清晰度和可识别性。例如,使用中值滤波器和高斯滤波器去除图像中的灰尘和划痕,将彩色图像转换为黑白两色以区分文字与背景,并通过直方图均衡化技术增强文字对比度,这些措施共同为OCR识别提供了高质量的图像基础。
自动化预处理:数字档案馆采用了自动化预处理流程,该流程包括图像校正、去除噪声、对比度调整以及自动边界检测与切割等步骤。这一流程能够自动适应不同质量的原始文档,通过消除倾斜、优化图像清晰度、增强文字对比度以及精准切割文字区域,有效提升了OCR识别的精度和速度,使得纸质档案的数字化转换更为高效和准确。
二、自动边界检测与切割
档案馆中的文件有时包含多个部分,如表格、文字和图片。AI平台利用边界检测算法来自动识别文档的边缘,从而准确地截取文件中的文字区域,并过滤掉空白边缘或杂物(例如钉孔、污渍等)。边界检测功能在对单张大幅度的档案文件进行识别时,能自动检测出各个需要识别的区域,有效避免误识别和多余信息干扰。
技术实现过程
在自动边界检测与切割的过程中,首先通过图像二值化强化文字与背景的对比度,然后利用轮廓检测算法如cv2.findContours识别图像中的文本行轮廓,接着通过cv2.boundingRect等算法拟合边界矩形以精确定位文本区域,最后根据这些边界矩形从原始图像中切割出文字区域,为后续OCR识别做好准备。
核心技术要点
智能切割:通过上述算法精确识别并切割出文档中的文字区域。这一步骤的关键在于能够准确地区分和定位文本区域,以便提高识别效率和准确性。
多区域识别:对于包含多个内容区域的文档,如表格、多栏文本等,算法需要能够准确识别并分别处理每个区域。这通常涉及到更复杂的图像分析技术,如布局分析,以识别图像中的文本区域、非文本区域以及文本的结构信息,如列、行、块、标题、段落、表格等。
三、文字与图片分离抽取
档案文件中通常包括文字和图片(例如签名、图示等),而OCR识别更适用于文字。AI平台可以先对图像进行分析,利用图像识别技术区分出文字部分和非文字部分,自动屏蔽图片区域或标签区域,以便专注于文字识别。通过这种方式,可以避免图像干扰,提升文字提取的精度。
技术实现过程
通过图像识别技术,区分文档中的文字和图片(如签名、图示等)。这一步骤的目的是在OCR识别前,将非文字元素从处理流程中排除,以减少干扰。
核心技术要点
图像内容分析:利用图像识别技术,准确区分文字和非文字内容。
区域屏蔽技术:自动屏蔽非文字区域,确保OCR识别的准确性。
四、档案识别与文本提取
在完成预处理后,系统会对图像中的文字部分进行OCR识别,提取出文档内容。OCR模型可以支持多种字体识别,包括手写体、打印体以及一些历史文档中的复古字体。此外,平台的OCR识别支持大批量自动处理,可以设定任务流水线,使得大量文档能在短时间内处理完毕。识别后的文本可以进一步结构化存储,便于后续的查找和管理。
技术实现过程
在图像预处理和区域切割之后,系统将对图像中的文字部分进行OCR识别,提取出文档内容。这一步骤涉及到多种字体的识别,包括手写体、打印体和复古字体等。
核心技术要点
多字体识别:OCR模型需要支持多种字体的识别,以适应不同历史时期和类型的文档。
批量处理能力:平台需要支持大批量文档的自动处理,以提高工作效率。
五、识别结果自动保存
识别完成后,系统会将结果转化为数字文档,并存入档案管理系统中。这些数字化的文本不仅可以生成PDF或Word文档,还可以直接保存为结构化数据库格式,便于后续的检索和分析。同时,系统可以为每个数字化文件自动生成日期、类型等元数据信息,便于后续的查询和档案整理。
技术实现过程
识别完成后,系统将把识别结果转化为数字文档,并存储到档案管理系统中。这些文档可以是PDF、Word格式,也可以直接保存为数据库格式,以便于后续的检索和分析。
核心技术要点
结构化存储:将识别后的文本结构化存储,便于管理和检索。
元数据管理:为数字化文件自动生成和管理元数据,如日期、类型等,以便于档案的整理和查询。
六、相关案例介绍
在江西省某地质资料档案馆的项目中,档案数字化需求尤为迫切,涉及大量珍贵的历史文件,这些文件承载了重要的地质文化专业信息,但同时面临着因纸质老化而难以长期保存的挑战。思通数科AI平台的引入,极大地提升了档案数字化的效率和质量。
具体应用流程
在该项目中,档案馆首先通过高精度扫描设备对档案进行数字化,随后平台自动进行图像预处理,去除图像中的噪点和不清晰区域,确保档案文字在后续OCR识别中保持高度清晰。在OCR识别过程中,平台支持多种字体,包括历史档案常见的仿宋体、行书体和部分手写体,确保档案馆中各类文件的识别准确性。识别出的文字和数据以结构化方式保存到档案管理系统,系统会自动生成文件日期、文档类型等元数据。
应用成效
1. 大规模批量处理:平台的批量处理功能让馆方能够快速高效地处理上万页档案文献,识别速度提升至每小时500页,极大地节省了人力资源。
2. 智能化检索与管理:识别后的档案文档可通过关键词、时间段、文档类型等字段快速检索,支持全文搜索功能,为研究人员提供了便捷高效的在线查阅体验。
3. 保存历史遗产:通过思通数科平台,档案馆得以完整保留历史文档的内容与细节,不仅保护了珍贵的文化遗产,也为公众提供了可持续的档案利用服务。
七、产品体验
产品体验地址:语音视频&文本图片多模态AI能力引擎平台
相关文章:

AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
文末有免费工具可在线体验,或者网络搜索关键词“思通开源AI能力平台” 一、扫描与图像预处理 技术实现过程 在纸质档案的数字化过程中,首先需要使用高精度扫描仪对纸质文档进行扫描,生成高清的数字图像。这一步骤是整个OCR流程的基础…...

Spring boot 读模块项目升级为spring cloud 项目步骤以及问题
1.结构说明 bean 模块 ,public 模块, client 模块, erp模块,system 主模块。 2.环境说明以及pom 原本环境 新环境 mysql 5.7 -------------- mysql 8.0 maven 3.9.6 jdk 8 -----------…...

时序数据库之influxdb和倒排索引以及LSM-TREE
一、时序数据库的特点 1、时序数据库用作打点,用来做监控使用,属于写多读少的场景,而且由于时间不可逆,几乎不可能出现更新的操作。而且监控数据一般只会查询最近几分钟数据,冷热数据查询频率非常明显。因此非常贴合ES…...

如何避免消息的重复消费问题?(消息消费时的幂等性)
如何避免消息的重复消费问题 1、 消息的幂等性1.1、概念1.2、产生业务场景 2、全局唯一IDRedis解决消息幂等性问题2.1、application.yml配置文件2.2、生产者发送消息2.3、消费者接收消息2.4、pom.xml引入依赖2.5、RabbitConfig配置类2.6、启动类2.7、订单对象2.8、测试 1、 消息…...

【Java SE】类与对象
现实世界中,随处可见的一个事物实体就是对象,而类就是同一类事物(或对象)的统称,由一个类构造对象的过程称为创建这个类的一个实例(instance),即: 类(class&…...

基于springboot的公益服务平台的设计与实现
文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于springboot的公益服务平台的设计与实…...

Tomcat(6) 什么是Servlet容器?
Servlet容器是Java EE技术中的一个关键组件,它负责管理和执行Servlet。Servlet容器提供了运行时环境,使得Servlet能够接收和响应来自客户端的HTTP请求。以下是Servlet容器的详细解释,以及一些相关的代码示例。 Servlet容器的主要功能 加载和…...

用js去除变量里的html标签
要用 JavaScript 去除字符串中的 HTML 标签,你可以使用正则表达式。以下是一个简单的示例代码: function removeHTMLTags(str) {return str.replace(/<[^>]*>/g, ); }// 示例 var str <p>This is <b>bold</b> text with <…...

Vue3+element-plus摘要
1.如果自己电脑vue版本是vue2版本,下面将详细介绍如何在vue2版本基础上继续安装 vue3版本且不会影响vue2版本的使用 1-1 在c盘或者别的盘建一个文件夹vue3 1-2 在这个文件夹里使用WINR 打开终端 输入命令 npm install vue/cli 安装完即可 1-3 然后进入此文件夹中的n…...
Android Studio 将项目打包成apk文件
第一步:选择Build -> Generate Signed APK 会出现: 我们选择 Create new… 然后选择你要存放密钥的地方 点击ok之后,则选择好了文件,并生成了jks文件了。 点击ok之后, 会出现: 选择release…...

贪心算法day2(最长递增子序列)
目录 1.最长递增子序列 方法一:动态规划 方法二:贪心二分查找 1.最长递增子序列 链接:. - 力扣(LeetCode) 方法一:动态规划 思路:我们定义dp[i]为最长递增子序列,那么dp[j]就是…...

arcgis pro 学习笔记
二维三维集合在一起,与arcgis不同 一、首次使用,几个基本设置 1.选项——常规里面设置自动保存时间 2.新建工程文件,会自动加载地图,可以在选项里面设置为无,以提高启动效率。 3.设置缓存位置,可勾选每次…...

OpenGL 进阶系列06 - OpenGL变换反馈(TransformFeedback)
一:概述 变换反馈(Transform Feedback)是 OpenGL 中的一项技术,允许你将顶点着色器的输出(例如变换后的顶点数据)直接传输到缓冲区,而不是将结果渲染到屏幕上。它在图形计算中非常有用,尤其在粒子系统、模拟、几何处理等场景中,可以用来获取顶点处理的中间结果,并将其…...

elementUI 点击弹出时间 date-picker
elementUI的日期组件,有完整的UI样式及弹窗,但是我的页面不要它的UI样式,点击的时候却要弹出类似的日期选择器,那怎么办呢? 以下是elementUI自带的UI风格,一定要一个输入框来触发。 这是我的项目中要用到的…...

【浙江大学大模型系列】启真医疗大模型(国内大模型)
启真大模型是一款专注于医疗领域的AI大模型,它坚持“数据知识双轮驱动”的技术路线,通过大模型技术和医学知识库的紧密结合,致力于推动大模型技术在医疗行业的落地和应用实践。 启真大模型的特点在于其强大的数据整合能力和医学知识库的支持。…...

NestJS 项目中如何使用 class-validator 进行数据验证
前言 在现代Web开发中,数据验证是必不可少的一环,它不仅能够确保数据的准确性,还能提高系统的安全性。在使用NestJS框架进行项目开发时,class-validator与class-transformer这两个库为我们提供了方便的数据验证解决方案。 本文将…...

【AI抠图整合包及教程】Meta SAM2:引领图像和视频分割技术的新纪元
在人工智能的浪潮中,Meta公司再次以Segment Anything Model 2(SAM 2)引领了图像和视频分割技术的新纪元。SAM 2的发布不仅为计算机视觉领域的研究和发展注入了新的活力,还预示着这一技术将在多个行业中找到广泛的应用场景。这一创…...

小菜家教平台(三):基于SpringBoot+Vue打造一站式学习管理系统
目录 前言 今日进度 详细过程 相关知识点 前言 昨天重构了数据库并实现了登录功能,今天继续进行开发,创作不易,请多多支持~ 今日进度 添加过滤器、实现登出功能、实现用户授权功能校验 详细过程 一、添加过滤器 自定义过滤器作用&…...

ArcGIS/QGIS按掩膜提取或栅格裁剪后栅格数据的值为什么变了?
问题描述: 现有一栅格数据,使用ArcGIS或者QGIS按照矢量边界进行按掩膜提取或者栅格裁剪以后,其值的范围发生了变化,如下: 可以看到,不论是按掩膜提取还是进行栅格裁剪后,其值的范围均与原来栅…...

Linux的基本指令(一)
1.ls指令 功能:对于目录,该命令列出该目录下的所有子目录与文件。对于文件,将列出文件名以及信息。 常用选项: -a列出目录下的所有文件,包括以 . 开头的隐含文件。 -l列出文件的详细信息 举例: rooti…...

python导入包失败 in <module> import pandas as pd
如果安装不成功就更新一下pip python.exe -m pip install --upgrade pip 再删掉原来的pandas pip uninstall pandas 再安装一次 pip install pandas...

不惧风雨,硬核防护!雷孜LaCie小金刚三防移动硬盘颠覆认知
不惧风雨,硬核防护!雷孜LaCie小金刚三防移动硬盘颠覆认知 哈喽小伙伴们好,我是Stark-C~ 说到移动硬盘大家潜意识的认为是一件很娇贵的数码产品,很怕湿,摔不得。所以我们在使用传统移动硬盘的时候不能摔,远…...

Yocto 项目下通过网络更新内核、设备树及模块
Yocto 项目下通过网络更新内核、设备树及模块 前言 在 Yocto 项目的开发过程中,特别是在进行 BSP(Board Support Package)开发时,经常需要调整特定软件包的版本,修改内核、设备树以及内核模块。然而,每次…...

Scheduled Sampling工作原理【小白记笔记】
Scheduled Sampling(计划采样)是一种在序列生成任务中用于逐步引导模型的训练策略。该方法最早由 Bengio 等人在 2015 年提出,主要用于解决序列到序列(sequence-to-sequence)模型中的曝光偏差(exposure bia…...

C++:C++的IO流
目录 一.C标准IO流 1.operator bool 二.C文件IO流 1.文件读取 ifstream (1)ifstream继承istream (2)ifstream 构造函数 (3)ifstream,get读取整个文件 (4)>&g…...

「QT」几何数据类 之 QLine 整型直线类
✨博客主页何曾参静谧的博客📌文章专栏「QT」QT5程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasolid…...

day58 图论章节刷题Part09(dijkstra(堆优化版)、Bellman_ford 算法)
dijkstra(堆优化版) 朴素版的dijkstra解法的时间复杂度为 O(n^2),时间复杂度只和 n(节点数量)有关系。如果n很大的话,可以从边的角度来考虑。因为是稀疏图,从边的角度考虑的话,我们在堆优化算法中最好使用…...

【计网不挂科】计算机网络期末考试——【选择题&填空题&判断题&简述题】试卷(1)
前言 大家好吖,欢迎来到 YY 滴计算机网络 系列 ,热烈欢迎! 本章主要内容面向接触过C的老铁 本博客主要内容,收纳了一部门基本的计算机网络题目,供yy应对期中考试复习。大家可以参考 本章是去答案版本。带答案的版本在下…...

智能出行助手:SpringBoot共享汽车管理平台
1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理共享汽车管理系统的相关信息成为必然。开发…...

【月之暗面kimi-注册/登录安全分析报告】
前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞 …...