当前位置: 首页 > news >正文

【论文笔记】The Power of Scale for Parameter-Efficient Prompt Tuning

🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题: The Power of Scale for Parameter-Efficient Prompt Tuning
作者: Brian Lester, Rami Al-Rfou, Noah Constant
发表: EMNLP 2021
arXiv: https://arxiv.org/abs/2104.08691

基本信息

摘要

在这项工作中,我们探讨了“prompt tuning”,这是一种简单而有效的机制,用于学习“soft prompt”以条件化冻结的语言模型执行特定下游任务。

与GPT-3使用的离散文本提示不同,soft prompt是通过反向传播学习的,并且可以调整以包含来自任意数量token示例的信号。

我们端到端的学习方法在少样本学习方面优于GPT-3。

更令人惊讶的是,通过使用T5在模型大小上的消融实验,我们表明提示微调在规模上变得更加具有竞争力:当模型超过数十亿参数时,我们的方法缩小了差距并匹配了模型微调(所有模型权重都进行调整)的强大性能。

这一发现尤其相关,因为大型模型成本高昂且难以共享和部署,而能够重复使用一个冻结模型执行多个下游任务可以减轻这一负担。

我们的方法可以看作是Li和Liang最近提出的“prefix tuning”的简化,我们提供了与这一方法和其他类似方法的比较。

最后,我们表明,使用soft prompt条件化冻结模型可以带来在领域迁移中的鲁棒性优势,并使“prompt ensembling”变得高效。我们发布了代码和模型检查点以重现我们的实验。

Standard model tuning of T5 achieves strong performance, but requires storing separate copies of the model for each end task

prompt tuning、全量微调、使用GPT-3生成提示词三种方法之间的比较。

主要贡献

  1. 提出了prompt tuning,并展示了其在大型语言模型调整机制中的竞争力。
  2. 对许多设计选择进行了消融,并展示质量与鲁棒性随规模提升而提高。
  3. 展示了prompt tuning优于全量微调在领域迁移问题上的表现。
  4. 提出了“prompt ensembling”并展示其有效性。

Prompt Tuning

Model tuning requires making a taskspecific copy of the entire pre-trained model for each downstream task and inference must be performed in separate batches

prompt tuning只需要为每个下游任务训练一个soft prompt,而全量微调需要训练整个模型。

给定一系列 n n n 个token, { x 1 , x 2 , … , x n } \{x_1, x_2, \ldots, x_n\} {x1,x2,,xn},T5 首先做的是嵌入这些token,形成一个矩阵 X e ∈ R n × e X_e \in \mathbb{R}^{n \times e} XeRn×e,其中 e e e 是嵌入空间的维度。soft prompt被表示为一个参数 P e ∈ R p × e P_e \in \mathbb{R}^{p \times e} PeRp×e,其中 p p p 是prompt的长度。然后,soft prompt被连接到嵌入的输入上,形成一个单一的矩阵 [ P e ; X e ] ∈ R ( p + n ) × e [P_e; X_e] \in \mathbb{R}^{(p+n) \times e} [Pe;Xe]R(p+n)×e,然后像往常一样通过编码器-解码器。训练模型以最大化 Y Y Y 的概率,但只有prompt参数 P e P_e Pe 被更新。

Prompt Ensemble

对一个下游任务训练多个Prompt,然后集成多个Prompt而不是多个模型。

实验

Ablations of various hyperparameters on prompt tuning performance (mean and stddev across 3 runs)

各种超参数对prompt tuning性能的影响。

Parameter usage of various adaptation techniques, fixing architecture to T5 1.1 and prompt/prefix length to 1–100 tokens (bands show mean and stddev)

与其他相似方法的比较。在具有可学习参数的方法中,提示调整是最参数高效的,对于超过十亿参数的模型,只需要不到0.01%的任务特定参数。

F1 mean and stddev for models trained on SQuAD and evaluated on out-of-domain datasets from the MRQA 2019 shared task

Mean and stddev of zero-shot domain transfer between two paraphrase detection tasks

领域迁移问题上的表现。

Performance of a five-prompt ensemble built from a single frozen T5-XXL model exceeds both the average and the best among the five prompts

prompt ensemble与prompt平均性能以及单个最好性能的比较。

总结

在这篇论文中,我们展示了prompt tuning是一种将冻结预训练语言模型适应下游任务的竞争性技术。

在流行的SuperGLUE基准上,其任务性能与传统模型调整相当,随着模型规模的增加,差距逐渐消失。

在零样本领域迁移中,我们发现prompt tuning导致了更好的泛化。这很可能表明,冻结通用语言理解参数并将下游学习限制在轻量级参数足迹内,有助于避免对特定领域的过度拟合。

除了任务质量指标之外,我们还讨论了转向冻结预训练模型在存储和服务器成本方面的吸引力。这一举措既实现了高效的多任务服务,也实现了高效的高性能提示集成。

展望未来,我们认为将任务定义参数与通用语言模型参数区分开来是一个令人兴奋的步骤,它为新的研究开辟了许多途径。

相关文章:

【论文笔记】The Power of Scale for Parameter-Efficient Prompt Tuning

🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 基本信息 标题: The Power of Scale for P…...

几个docker可用的镜像源

几个docker可用的镜像源 &#x1f490;The Begin&#x1f490;点点关注&#xff0c;收藏不迷路&#x1f490; sudo rm -rf /etc/docker/daemon.json sudo mkdir -p /etc/dockersudo tee /etc/docker/daemon.json <<-EOF {"registry-mirrors": ["https://d…...

Spring学习笔记_27——@EnableLoadTimeWeaving

EnableLoadTimeWeaving 1. 介绍 在Spring框架中&#xff0c;EnableLoadTimeWeaving 是一个注解&#xff0c;它用于启用加载时织入&#xff08;Load-Time Weaving, LTW&#xff09; LWT[Spring学习笔记_26——LWT-CSDN博客] 2. 场景 AOP&#xff1a;在Spring框架中&#xf…...

【数据分析】如何构建指标体系?

有哪些指标体系搭建模型&#xff1f;五个步骤教你从0开始搭建指标体系 一、企业指标体系搭建存在什么问题 许多企业在搭建数据指标体系时遇到了诸多难题&#xff0c;如问题定位不准确、数据采集不完整、目标不一致、报表无序、指标覆盖不全面以及报表价值未充分利用等。 1、…...

大数据程序猿不可不看的资料大全

​ 随着大数据技术的发展&#xff0c;大数据程序猿在数据采集、处理、分析、存储等方面的技能需求不断增加。要在这个领域保持竞争力&#xff0c;系统性地学习和掌握大数据工具、技术架构和行业趋势是非常重要的。以下为您提供一份围绕大数据程序猿不可不看的资料大全&#xf…...

【架构设计常见技术】

EJB EJB是服务器端的组件模型&#xff0c;使开发者能够构建可扩展、分布式的业务逻辑组件。这些组件运行在EJB容器中&#xff0c;EJB将各功能模块封装成独立的组件&#xff0c;能够被不同的客户端应用程序调用&#xff0c;简化开发过程&#xff0c;支持分布式应用开发。 IOC …...

LLMs之MemFree:MemFree的简介、安装和使用方法、案例应用之详细攻略

LLMs之MemFree&#xff1a;MemFree的简介、安装和使用方法、案例应用之详细攻略 目录 MemFree的简介 1、MemFree的价值 2、MemFree 配备了强大的功能&#xff0c;可满足各种搜索和生产力需求 3、MemFree AI UI生成器功能 MemFree 安装和使用方法 1. 前端安装 2. 向量服务…...

Hive简介 | 体系结构

Hive简介 Hive 是一个框架&#xff0c;可以通过编写sql的方式&#xff0c;自动的编译为MR任务的一个工具。 在这个世界上&#xff0c;会写SQL的人远远大于会写java代码的人&#xff0c;所以假如可以将MR通过sql实现&#xff0c;这个将是一个巨大的市场&#xff0c;FaceBook就这…...

[C++] GDB的调试和自动化检测

文章目录 GDB基本使用1. bazel的debug过程2. line-tables-only的使用 Reference GDB基本使用 参考文档&#xff1a; https://zhuanlan.zhihu.com/p/655719314 1. bazel的debug过程 需要带--copt-g --copt-ggdb选项进行编译 // bazel build --stripnever --copt-g --copt-ggd…...

车机版 Android Audio 框架笔记

车机版Android Audio 框架涉及的知识点很多&#xff0c;在工作中涉及的功能板块也及其繁杂&#xff0c;后面我会根据工作中的一些实际遇到的实例&#xff0c;逐步拆解 Android Audio的知识点&#xff0c;这里从网上整理了一些思维导图&#xff0c;可以做为未来的一个研究方向&a…...

【NLP自然语言处理】深入解析Encoder与Decoder模块:结构、作用与深度学习应用

目录 &#x1f354; Encoder模块 1.1 Encoder模块的结构和作用 1.2 关于Encoder Block 1.3 多头自注意力层(self-attention) &#x1f354; Decoder模块及Add & Norm模块 3.1 Decoder模块介绍 3.2 Add & Norm模块 3.3 位置编码器Positional Encoding 3.4 Decod…...

【JAVA EE】多线程、锁、线程池的使用

目录 创建线程 方法一&#xff1a;继承Thread类来创建一个线程类 方法二&#xff1a;实现Runnable&#xff0c;重写run 线程等待 获取当前线程引用 休眠当前线程 线程的状态 synchronized synchronized的特性 1、互斥 2、刷新内存 死锁 死锁的四个必要条件 避免死…...

云计算:定义、类型及对企业的影响

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 云计算&#xff1a;定义、类型及对企业的影响 云计算&#xff1a;定义、类型及对企业的影响 云计算&#xff1a;定义、类型及对企…...

大数据面试题--kafka夺命连环问

1、kafka消息发送的流程&#xff1f; 在消息发送过程中涉及到两个线程&#xff1a;一个是 main 线程和一个 sender 线程。在 main 线程中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给双端队列&#xff0c;sender 线程不断从双端队列 RecordAccumulator 中拉取…...

【大模型】Spring AI Alibaba 对接百炼平台大模型使用详解

目录 一、前言 二、Spring AI概述 2.1 spring ai是什么 2.2 Spring AI 核心能力 2.3 Spring AI 应用场景 三、Spring AI Alibaba 介绍 3.1 Spring AI Alibaba 是什么 3.2 Spring AI Alibaba 核心特点 3.3 Spring AI Alibaba 应用场景 四、SpringBoot 对接Spring AI Al…...

Zabbix如何配置将信息发送到邮件

申请邮箱&#xff0c;下面以QQ邮箱为例 1.1登录邮箱后&#xff0c;点击设置->账号 1.2开启服务 1.3点击生成授权码&#xff08;这里生成的授权码记得保存&#xff0c;后面要用到&#xff09; 创建报警媒介类型 2.1点击管理/媒介/Email 2.2编辑 Email&#xff0c;这里配置的…...

jmeter常用配置元件介绍总结之前置处理器、测试片段

系列文章目录 安装jmeter jmeter常用配置元件介绍总结之前置处理器、测试片段 6.前置处理器6.1用户参数6.2取样器超时6.3.测试片段6.4JSR223 PreProcessor6.5.JDBC PreProcessor 6.前置处理器 在取样器请求之前执行的操作&#xff0c;优先级比取样器高&#xff0c;用来处理一些…...

Redis2:Redis数据结构介绍、通用命令、String类型、Key的层级格式

欢迎来到“雪碧聊技术”CSDN博客&#xff01; 在这里&#xff0c;您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者&#xff0c;还是具有一定经验的开发者&#xff0c;相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导&#xff0c;我将…...

jenkins流水线pipeline

创建项目 1. 新建item 并选择pipeline 1.1 和普通项目配置的区别 普通项目配置目录&#xff1a; pipeline项目目录&#xff1a; pipeline的两种语法 声明式语法 2. 配置 2.1 流水线配置 2.2 选择声明式 声明式需要添加一个名为Jenkinsfile的文件实现流水线 Jenkinsfile的…...

【计网】基于TCP协议的Echo Server程序实现与多版本测试

目录 前言&#xff1a; 1、InitServer类的实现 1.1. 创建流式套接字 1.2. bind 绑定一个固定的网络地址和端口号 1.3.listen监听机制 1.4.完整代码 2. 循环接收接口与服务接口 2.1.accept函数讲解 讲个商场拉客的故事方便我们理解&#xff1a; 2.2.服务接口实现 3.服…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...