当前位置: 首页 > news >正文

Ascend Extension for PyTorch的源码解析

1 源码下载

Ascend对pytorch代码的适配,可从以下链接中获取。
Ascend/pytorch
执行如下命令即可。

git clone https://gitee.com/ascend/pytorch.git

2 目录结构解析

源码下载后,如果需要编译torch-npu,最好保持pytorch的源码版本匹配,以及其编译环境的gcc,g++等与torch-npu的版本匹配,否则会出现各种乱起八糟的问题。

执行编译命令:bash ci/build.sh --python=3.x

如:


csrc/aten/AutoCastOps.cpp:28:70: error: macro "KERNEL_PRIVATEUSEONE" passed 3 arguments, but takes just 2
KERNEL_PRIVATEUSEONE(_convolution, deprecated, lower_precision_fp)

在torch-npu编译成功之后,通过generate_code.sh会生成如下文件:

    torch_npu/csrc/aten/ADInplaceOrViewTypeEverything.cpptorch_npu/csrc/aten/ADInplaceOrViewType_0.cpptorch_npu/csrc/aten/ADInplaceOrViewType_1.cpptorch_npu/csrc/aten/CustomFunctions.cpptorch_npu/csrc/aten/CustomFunctions.htorch_npu/csrc/aten/CustomRedispatch.cpptorch_npu/csrc/aten/CustomRedispatch.htorch_npu/csrc/aten/CustomRegisterSchema.cpptorch_npu/csrc/aten/ForeachRegister.cpptorch_npu/csrc/aten/Functions.cpptorch_npu/csrc/aten/Functions.htorch_npu/csrc/aten/NPUOpApiNativeFunctions.htorch_npu/csrc/aten/QuantizedRegister.cpptorch_npu/csrc/aten/RegisterFunctionalizationEverything.cpptorch_npu/csrc/aten/RegisterFunctionalization_0.cpptorch_npu/csrc/aten/RegisterFunctionalization_1.cpptorch_npu/csrc/aten/RegisterSparseCsrNPU.cpptorch_npu/csrc/aten/RegisterSparseNPU.cpptorch_npu/csrc/aten/VariableType.htorch_npu/csrc/aten/VariableTypeEverything.cpptorch_npu/csrc/aten/VariableType_0.cpptorch_npu/csrc/aten/npu_native_functions_by_codegen.yamltorch_npu/csrc/aten/python_functions.htorch_npu/csrc/aten/python_functionsEverything.cpptorch_npu/csrc/aten/python_functions_0.cpptorch_npu/csrc/aten/python_functions_1.cpptorch_npu/csrc/aten/variable_factories.htorch_npu/testing/_npu_testing_utils.pytorch_npu/utils/custom_ops.pytorch_npu/utils/exposed_api.py

上述文件生成路径默认的是torch_npu/csrc/aten。算子编译信息的yaml文件:torch_npu/csrc/aten/npu_native_functions.yaml

打开上述的的文件中,从中分析可知大概有3种方式实现昇腾npu算子的调用。

3. 算子注册方式

本质上,ascend上对pytroch框架的适配代码,主要是将npu上的算子库对接起来。如何对接这些算子,是一套机制的问题,本身应该不复杂。

3.1 通过torch的regsiter方式

直接调用npu的算子。torch_npu/csrc/aten/RegisterSparseNPU.cpp

TORCH_LIBRARY_IMPL(aten, SparsePrivateUse1, m) {
m.impl("abs", TORCH_FN(wrap_SparseNPU_abs_));
m.impl("abs_", TORCH_FN(wrap_SparseNPU_abs__));
m.impl("abs.out", TORCH_FN(wrap_SparseNPU_abs_out));
m.impl("sgn", TORCH_FN(wrap_SparseNPU_sgn_));
m.impl("sgn_", TORCH_FN(wrap_SparseNPU_sgn__));
m.impl("sgn.out", TORCH_FN(wrap_SparseNPU_sgn_out));

3.2 通过定义算子方式

参考文件:torch_npu/csrc/aten/CustomFunctions.cpp

#include <ATen/core/dispatch/Dispatcher.h>#include "torch_npu/csrc/aten/CustomFunctions.h"namespace at_npu {
namespace native {
namespace custom_ops {int64_t npu_change_data_ptr(const at::Tensor & dst, const at::Tensor & src, int64_t index) {static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::npu_change_data_ptr", "").typed<int64_t (const at::Tensor &, const at::Tensor &, int64_t)>();return op.call(dst, src, index);
}
int64_t get_npu_format(const at::Tensor & self) {static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::get_npu_format", "").typed<int64_t (const at::Tensor &)>();return op.call(self);
}
at::Tensor npu_format_cast(const at::Tensor & self, const at::Tensor & dst) {static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::npu_format_cast", "Tensor").typed<at::Tensor (const at::Tensor &, const at::Tensor &)>();return op.call(self, dst);
}
at::Tensor & npu_format_cast_(at::Tensor & self, int64_t acl_format) {static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::npu_format_cast_", "acl_format").typed<at::Tensor & (at::Tensor &, int64_t)>();return op.call(self, acl_format);at::Tensor & npu_format_cast_(at::Tensor & self, const at::Tensor & src) {static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::npu_format_cast_", "").typed<at::Tensor & (at::Tensor &, const at::Tensor &)>();return op.call(self, src);
}
at::Tensor empty_with_format(at::IntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, int64_t acl_format) {static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::empty_with_format", "").typed<at::Tensor (at::IntArrayRef, ::std::optional<at::ScalarType>, ::std::optional<at::Layout>, ::std::optional<at::Device>, ::std::optional<bool>, int64_t)>();return op.call(size, dtype, layout, device, pin_memory, acl_format);
}
at::Tensor unsafe_empty_with_format(at::IntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, int64_t acl_format, bool keep_format) {static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("npu::unsafe_empty_with_format", "").typed<at::Tensor (at::IntArrayRef, ::std::optional<at::ScalarType>, ::std::optional<at::Layout>, ::std::optional<at::Device>, ::std::optional<bool>, int64_t, bool)>();return op.call(size, dtype, layout, device, pin_memory, acl_format, keep_format);
}~/pytorch-ascend/torch_npu/csrc/aten/CustomFunctions.cpp[1,RO]  ...}
}
}

3.3 通过API重定向映射的方式

参考文件:torch_npu/utils/custom_ops.py

torch_npu.npu_layer_norm_eval = torch.ops.npu.npu_layer_norm_eval
torch_npu.npu_fused_attention_score_grad = torch.ops.npu.npu_fused_attention_score_grad
torch_npu.npu_quant_conv2d = torch.ops.npu.npu_quant_conv2d
torch_npu.npu_view_copy = torch.ops.npu.npu_view_copy
torch_npu.npu_fast_gelu = torch.ops.npu.npu_fast_gelu
torch_npu.npu_fused_attention_layernorm_qkv_fwd = torch.ops.npu.npu_fused_attention_layernorm_qkv_fwd
torch_npu.npu_fast_gelu_backward = torch.ops.npu.npu_fast_gelu_backward
torch_npu.npu_bmm_v2_mat1_backward = torch.ops.npu.npu_bmm_v2_mat1_backward

以上属于个人理解,如有错误敬请指正。

相关文章:

Ascend Extension for PyTorch的源码解析

1 源码下载 Ascend对pytorch代码的适配&#xff0c;可从以下链接中获取。 Ascend/pytorch 执行如下命令即可。 git clone https://gitee.com/ascend/pytorch.git2 目录结构解析 源码下载后&#xff0c;如果需要编译torch-npu&#xff0c;最好保持pytorch的源码版本匹配&…...

鸿蒙HarmonyOS开发:给应用添加基础类型通知和进度条类型通知(API 12)

文章目录 一、通知介绍1、通知表现形式2、通知结构3、请求通知授权 二、创建通知1、发布基础类型通知2、发布进度类型通知3、更新通知4、移除通知 三、设置通知通道1、通知通道类型 四、创建通知组五、为通知添加行为意图1、导入模块。2、创建WantAgentInfo信息。4、创建WantAg…...

从零开始使用YOLOv11——Yolo检测detect数据集自建格式转换为模型训练格式:20w+图片1w+类别代码测试成功

在之前的文章中记录了YOLO环境的配置安装和基本命令的一些使用&#xff0c;上一篇博文的地址快速链接&#xff1a;从零开始使用YOLOv8——环境配置与极简指令&#xff08;CLI&#xff09;操作&#xff1a;1篇文章解决—直接使用&#xff1a;模型部署 and 自建数据集&#xff1a…...

自动化新时代:机器取代工作,我们该如何重塑自我?

内容概要 在自动化时代的浪潮中&#xff0c;技术的飞速发展对传统工作模式产生了深远影响。我们眼前浮现的是一个充满机遇与挑战的新世界。许多岗位面临被机器取代的威胁&#xff0c;然而&#xff0c;这一变化并不仅仅是消极的。在这个背景下&#xff0c;个体不仅需要重新审视…...

GEE 土地分类——利用Sentinel-2数据进行土地分类

目录 简介 函数 ee.Classifier.smileRandomForest(numberOfTrees, variablesPerSplit, minLeafPopulation, bagFraction, maxNodes, seed) Arguments: Returns: Classifier 代码 结果 简介 利用Sentinel-2数据进行土地分类的流程大致可分为以下几个步骤: 1. 数据获取…...

《C++ 游戏开发》

一、引言 在当今的数字娱乐时代&#xff0c;游戏开发已经成为一个充满活力和创新的领域。C 作为一种强大的编程语言&#xff0c;在游戏开发中占据着重要的地位。它具有高效的性能、丰富的功能和广泛的适用性&#xff0c;能够满足游戏开发中对性能和灵活性的高要求。本文将深入探…...

2024年11月10日系统架构设计师考试题目回顾

案例分析 试题一&#xff1a;质量属性 基于描述填空是什么质量属性&#xff0c;常规题。&#xff08;性能&#xff0c;功能&#xff0c;安全&#xff0c;可用等等&#xff09;可用性而言&#xff0c;王工建议采用 ping/echo 机制检测&#xff0c;不过从资源使用角度&#xff…...

测试实项中的偶必现难测bug--苹果支付丢单问题

问题描述: app支付后,由于某种原因(可能是网络、流量不稳定、或者用户快速频繁操作。。。)会造成一定概率性的回调苹果支付结果失败的情况出现,表现的直观现象就是客户反馈已经支付了,包括苹果支付也是有记录,但是我们的后台显示的是已取消状态的订单 验证难点:测试和…...

Elasticsearch的数据类型

Elasticsearch(简称 ES)支持多种数据类型,主要分为以下几类: 1. 基本数据类型 Text:用于全文搜索的文本字段。ES 会对其内容进行分词处理。Keyword:适用于精确匹配的字段,例如名称、标签等。ES 不会对其内容分词处理。Integer:整数类型,包括 byte、short、integer 和…...

SSL 证书申请以及配置流程

SSL 证书申请以及配置流程 手动申请免费 SSL 证书的简明指南 如果你希望手动为你的网站申请免费的 SSL 证书&#xff0c;Let’s Encrypt 提供了一个很棒的免费服务。而 Certbot 则是官方推荐的工具&#xff0c;可以帮助你完成证书的申请和配置。以下是如何一步步完成的详细说…...

[Docker#4] 镜像仓库 | 部分常用命令

目录 什么是 Docker Registry 镜像仓库生活案例 镜像仓库分类 镜像仓库工作机制 常用的镜像仓库 私有仓库 镜像仓库命令 镜像命令[部分] 容器命令[部分] 什么是 Docker Registry 定义&#xff1a;Docker Registry 负责存储、管理和分发镜像&#xff0c;并提供了登录认…...

工业通信协议对比:OPC-UA、Modbus、MQTT、HTTP

综合对比表 对比项OPC-UAModbusMQTTHTTP通信效率低&#xff0c;带宽消耗高高高&#xff0c;开销低&#xff0c;效率高低&#xff0c;带宽消耗大实时性一般&#xff0c;延迟较高高&#xff0c;延迟低高&#xff0c;低延迟低&#xff0c;延迟高性能消耗高&#xff0c;需要高性能…...

docker 常用方法

目录 docker参数解释 基础信息和环境变量设置 容器运行和管理相关参数 数据卷挂载 GPU 相关参数 镜像相关参数 查看现有的镜像 docker images 查看正在运行的docker docker ps 1、docker启动停止及查看状态 启动docker&#xff1a; systemctl start docker 停止docker…...

区块链技术入门:以太坊智能合约详解

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 区块链技术入门&#xff1a;以太坊智能合约详解 区块链技术入门&#xff1a;以太坊智能合约详解 区块链技术入门&#xff1a;以太…...

特定数据库的备份脚本

该脚本 mysql_backup.sh 是一个 MySQL 数据库的备份脚本&#xff0c;以下是它的工作原理和需要注意的细节&#xff1a; 脚本内容分析 1.设置时间变量 TIME : TIMEdate %F_%H-%M-%S该变量 TIME 存储当前日期和时间&#xff0c;格式为 YYYY-MM-DD_HH-MM-SS&#xff0c;用于生…...

uni-app打包后报错云服务空间未关联

使用uni-app打包到h5 项目里面用到了uni-app的云端一体城市选择组件&#xff0c;这个组件数据用到了uniCloud云服务空间&#xff0c;在本地运行没问题&#xff0c;打包之后测试环境报错&#xff1a; 一顿查&#xff0c;查到了官网是这样说的&#xff1a; cli publish --platfo…...

FPGA学习(10)-数码管

前3节视频目的是实现显示0~F的数码管仿真&#xff0c;后3节是用驱动芯片驱动数码管。 目录 1.数码管显示原理 2.代码过程 2.1仿真结果 3.串行移位寄存器原理 3.1原理 ​编辑 3.2 数据手册 3.3 先行设计思路 4.程序 4.1确定SRCLK的频率 4.2序列计数器 4.3 不同coun…...

C++(继承)

继承的语法 继承的好处&#xff1a;减少重复代码 语法&#xff1a; class 子类 &#xff1a; 继承方法 父类 子类 也称为 派生类 父类 也成为 基类 继承方式 公共继承 保护继承 私有继承 结论&#xff1a;父类中私有成员也是被子类继承下去了&#xff0c;只是由编译器给隐藏后…...

华为OD机试 - RSA加密算法(Java 2024 E卷 100分)

long n (long) Math.sqrt(num); 与long n (long) Math.floor(Math.sqrt(num)); 这两行代码的目的都是计算 num 的平方根&#xff0c;并将结果转换为 long 类型的整数。然而&#xff0c;它们在处理方式上有一些微小的差别。 long n (long) Math.sqrt(num);long n (long) M…...

分组校验在Spring中的应用详解

目录 前言1. 什么是分组校验2. 分组校验的基本原理3. 分组校验的实现步骤3.1 定义分组接口3.2 在校验项中指定分组3.3 校验时指定要校验的分组3.4 默认分组和分组的继承 4. 分组校验的优势和适用场景4.1 优势4.2 适用场景 5. 常见问题与解决方案5.1 校验未生效5.2 无法识别默认…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...