当前位置: 首页 > news >正文

精华帖分享|浅谈金融时间序列分析与股价随机游走

本文来源于量化小论坛公共讨论区板块精华帖,作者为正扬,发布于2024年6月3日。

以下为精华帖正文:

01

时间序列分析是个很唬人的术语,实际上它也不是一个很容易接近的话题。我本科曾经短暂地学过一点点,又看到互联网上存在许多关于时许分析的操作谬误,因此特写本文给大家一些好上手的理解方式。

时间序列分析是统计学的一个分支,它旨在研究有时间顺序的数据,探索其内在结构和特性,从而进行描述、建模、预测和控制。而统计学作为一门核心科学,时序分析也继承其科学性,有很强的逻辑性。反映到具体实操场景,就是用户对使用的模型必须有清楚的认知,否则即使模型提供了预测值,也不知道如何使用。

在这里,我就以量化中最常见的股价/币价,来说明使用时序分析时你一定会遇到的种种困难(和可能的解法)。本文无法一语道破如何预测股价,只是希望揭开时间序列分析的面纱,让你感觉不再陌生。

02

时间序列

首先讲讲时间序列的分类,因为时序不仅仅在金融数据中使用,也在各行各业中广泛应用。销售数据、气象信息和GDP都是时间序列。下面这张图就说明了时间序列的多种变化,分别是周期性(房屋销售额存在时长和频率不确定的高低起伏),季节性(电力产值的冬夏两季的规律波动),趋势性(国债价格随天数增加而下降)和随机性(谷歌的股价波动)。图片中的数据其实包含多种时间序列性质,有兴趣的读者可以尝试从中再分离一种明显性质,具体答案见链接原文。

图片

来源:https://otexts.com/fppcn/tspatterns.html

只要是按照时间顺序排列的离散数据都可以成为时间序列,而有了序列我们就可以对数据作统计分析,得到其均值(期望)和方差(二阶矩)。若对时间序列分类,则有平稳时间序列非平稳时间序列。一般而言,我们对平稳的时间序列更有兴趣,因为从字面理解,平稳则意味着我们可以推断规律。(如果想探索更严谨的定义,请自行搜索严格平稳和广义平稳)。当然,平稳并不一定代表一定有规律可推断,这一点在后面也会着重说明。

看到这里你已经知道,时间序列分析所需要的数据其实是非常苛刻的,而且上述图片的四种数据都不是平稳数据。回想一下,你是否曾经把这些原始数据放进时序模型里面去尝试建模呢?

03

金融时间序列

那我们不妨用大饼数据来看看,究竟如何处理价格走势,使其符合时间序列分析的要求。本章的所有技术细节你都可以跳过,只要看加粗的结论就行。

首先,我们有一张btc-usdt.csv,里面包含的close收盘价和volume成交量是我们的目标。先处理close,我们的做法是取其对数收益率。这样做有两个好处,首先相比百分比收益率,对数收益率可加;其次可以形成一个公式,yt=yt−1+Δyt.这个递推公式赋予了其推理逻辑。于是我们就把问题转化为:只要能预测Δyt,我们就可以预测整个价格的走势了。

图片

大饼小时线收盘价(暴涨暴跌,非常不平稳,作为新手请凭感觉理解)

图片

大饼对数收益率(相比收盘价,是不是大多数都集中在0之间?这样就看起来平稳多了)

图片

如果你想了解测试时序平稳性的工具,请搜索Augmented Dickey–Fuller test. 以下结果可能需要至少本科概率论与数理统计的知识去理解。(别忘了问chatgpt辅助理解)这里的结果提示这个序列是平稳的。

ADF Test Results:
ADF Statistic: -14.11980992097059
p-value: 2.4361396630638024e-26
Critical Values:
1%: -3.439835148993393
5%: -2.865725696693157
10%: -2.568998987353403
Used lag: 3
Number of observations used: 692

1、随机游走

我们认为这个序列是一个平稳序列,但是不是就可以开始建模预测了呢?并非如此。

前文提到,平稳并不一定代表一定有规律可推断,因为白噪声也算是一种平稳。白噪声是完全随机的数据,统计学上是一个正态分布,没有任何算法可以告诉你下一个随机数是多少。前文中我们提到股价可以表示为yt=yt−1+Δyt,如果Δyt是白噪声,那么yt就是在前一期的值上再加一个随机数,请问它是能预测的吗?很明显,不行,这个模型也被称为随机游走(random walking),你能想到的布朗运动就是RW在二维空间中的形式。那么股价是随机游走吗?不幸的是,很大概率是的。 要验证股价随机游走,必须祭出统计学工具。这里我们会用到Ljung-Box Q检验,辅助自相关函数图作直观展示。

首先看Ljung-Box Q,其p值大于0.05,这意味着我们不能以 95% 的置信水平拒绝原假设,认为没有足够的证据说明时间序列不是白噪声。(此段需理解数理统计中的假设检验部分。)

图片

Lungbox Test Results:
lb_stat lb_pvalue
10 18.05919 0.053973

2、自相关函数

我们用另一个更直观的方式看:自相关函数。它表示某时刻的数据与其前n项数据的自相关关系。第一根柱表示,它与自身的相关性为1,从第二项开始相关性迅速降为0左右,在置信区间内,说明它与其滞后项没有自相关。因此我们大致判定,这个数列是一个白噪声数列。我们没有办法用时间序列去推测btc-usdt的未来走势。

图片

04

模型

图片

图片

这里就可以看出它的原值就包含很强的周期性特征了。我们进一步分析:

ADF Test Results:
ADF Statistic: -10.56484687260585
p-value: 7.563340881893284e-19
Critical Values:
1%: -3.439974756130998
5%: -2.865787205712192
10%: -2.569031757724822
Used lag: 13
Number of observations used: 682

ADF检验表明该序列是平稳序列。这个结论和随机游走模型相同。

Ljungbox Test Results:
lb_stat lb_pvalue
10 90.340146 4.585370e-1

Ljung Box Q检验表明p value接近0,远小于0.05,因此拒绝该序列为白噪声。说明这个数列是有时序关系的。

图片

ACF图表明,当前项与滞后1项存在负的自相关关系,即滞后1期正值则当期大概率负值,即该小时放量则下个小时更可能缩量。

图片

Partial ACF图,用于判断ARMA模型阶数,这里不展开,具体可问chatgpt。

1、建模过程

接下来我们就进入建模过程了,由以上ACF和PACF图推断,我们使用ARMA(1,1)模型。

图片

输出模型结果:

图片

图片

所以这个时间序列ARMA(1,1)的模型即为yt=0.0006+0.5460yt−1+ϵt−0.9789ϵt−1.

此外,关注模型的诊断数据,Ljung-Box在此检测残差,发现p值大于0.05,提示残差不含时序特征,说明我们成功提取了时间序列特征。Heteroskedasticity检测波动,也不显著。最后Jarque-Bera检测提示残差分布显著偏离正态分布,可能需要在预测时加以修正。

2、预测

基于这个结果,我们可以对未来数据进行预测了。但是请问,此处可以预测未来多少期数据?我的答案是1期,最多两2期。因为超出这个限度,我们会基于我们的预测值再去预测未来(别忘了ACF函数只有1期自相关关系),会导致误差显著增大。

以下是预测的结果:

2021-04-30 07:00:00 0.085933

05

结语

到此,我们就做完了对某个时间序列的对数变化率的时间序列分析。我一直认为时间序列模型是一个工具,但时间序列分析是一门科学。工具可以对任何正确格式的输入都产生一个结果,但你需要用科学和逻辑去分析这个结果的合理性,否则这个结果只能图一乐。

本文有许多不详尽之处,有的是想照顾看热闹的朋友从而写得更直白一些,有的可能是我真的已经忘了QAQ。如大佬们发现错误欢迎在评论区指正。

最后祝大家都能写代码赚大钱!^^

相关文章:

精华帖分享|浅谈金融时间序列分析与股价随机游走

本文来源于量化小论坛公共讨论区板块精华帖,作者为正扬,发布于2024年6月3日。 以下为精华帖正文: 01 引 时间序列分析是个很唬人的术语,实际上它也不是一个很容易接近的话题。我本科曾经短暂地学过一点点,又看到互联…...

任意文件下载漏洞

1.漏洞简介 任意文件下载漏洞是指攻击者能够通过操控请求参数,下载服务器上未经授权的文件。 攻击者可以利用该漏洞访问敏感文件,如配置文件、日志文件等,甚至可以下载包含恶意代码的文件。 这里再导入一个基础: 你要在网站下…...

LeetCode 445.两数相加 II

题目: 给你两个 非空 链表来代表两个非负整数。数字最高位位于链表开始位置。它们的每个节点只存储一位数字。将这两数相加会返回一个新的链表。 你可以假设除了数字 0 之外,这两个数字都不会以零开头。 思路:反转链表 两数相加 I 代码&…...

CentOS 7中查找已安装JDK路径的方法

使用yum安装了jdk8,但是其他中间件需要配置路径的时候,却没办法找到,如何获取jdk路径: 一、确认服务器是否存在jdk java -version 二、查找jdk的 java 命令在哪里 which java 三、找到软链指向的地址 ls -lrt /usr/bin/java l…...

springboot基于Web足球青训俱乐部管理后台系统开发(代码+数据库+LW)

摘 要 随着社会经济的快速发展,人们对足球俱乐部的需求日益增加,加快了足球健身俱乐部的发展,足球俱乐部管理工作日益繁忙,传统的管理方式已经无法满足足球俱乐部管理需求,因此,为了提高足球俱乐部管理效率…...

RHCE的学习(21)

第三章 Shell条件测试 用途 为了能够正确处理Shell程序运行过程中遇到的各种情况,Linux Shell提供了一组测试运算符。 通过这些运算符,Shell程序能够判断某种或者几个条件是否成立。 条件测试在各种流程控制语句,例如判断语句和循环语句中…...

Ubuntu 18.04 配置sources.list源文件(无法安全地用该源进行更新,所以默认禁用该源)

如果你 sudo apt update 时出现诸如 无法安全地用该源进行更新,所以默认禁用该源 的错误,那就换换源吧,链接: https://mirror.tuna.tsinghua.edu.cn/help/ubuntu/ 注意版本: 修改源文件: sudo nano /etc…...

19.UE5道具掉落

2-21 道具掉落,回血、回蓝、升级提升伤害_哔哩哔哩_bilibili 目录 1.道具的创建,道具功能的实现 2.随机掉落 1.道具的创建,道具功能的实现 新建Actor蓝图,并命名为道具总类,添加一个Niagara粒子组件和一个碰撞箱bo…...

MySQL —— MySQL逻辑架构与查询过程

文章目录 MySQL逻辑架构整体分为三层连接层服务层查询缓存解析器优化器执行器 存储引擎层系统文件层 MySQL 查询过程查询过程框图 博客1 博客2 MySQL逻辑架构整体分为三层 最上层为客户端层,并非MySQL所独有,诸如:连接管理、授权认证、权限校…...

ODOO学习笔记(12):自定义模块开发

一、Odoo模块结构基础 基本目录结构 Odoo自定义模块通常有一个特定的目录结构。一个典型的模块目录包含以下文件和文件夹: __init__.py:这是一个Python模块初始化文件。它使得该目录被视为一个Python模块。在这个文件中,你可以通过from. impo…...

Excel单元格中自适应填充多图

实例需求:在Excel插入图片时,由于图片尺寸各不相同,如果希望多个图片填充指定单元格,依靠用户手工调整,不仅费时费力,而且很难实现完全填充。如下图中的产品图册,有三个图片,如下图所…...

20.useMediaQuery

React useMediaQuery 钩子:如何优雅地实现响应式设计? 在现代 Web 开发中,响应式设计是一个关键概念,它允许应用根据不同的屏幕尺寸和设备特性调整其布局和行为。useMediaQuery 钩子提供了一种声明式的方法来在 React 组件中使用媒体查询,使得响应式逻辑的实现变得简单而…...

无人机场景 - 目标检测数据集 - 车辆检测数据集下载「包含VOC、COCO、YOLO三种格式」

数据集介绍:无人机场景车辆检测数据集,真实场景高质量图片数据,涉及场景丰富,比如无人机场景城市道路行驶车辆图片、无人机场景城市道边停车车辆图片、无人机场景停车场车辆图片、无人机场景小区车辆图片、无人机场景车辆遮挡、车…...

聚合查询(查询)

count:统计表中所有的行数 指定某一列不统计NULL sum:求和 NULL值不参与计算(省略) avg():对所有行的指定列求平均值 max() min():求所有指定行中最大值与最小值 分组查询 group by: ROUDN()小数点 havin…...

QT QLineEdit失去焦点事件问题与解决

本文介绍如何获得QLineEdit的失去焦点事件和获得焦点的输入框也会触发失去焦点事件的问题! 目录 一、QLineEdit获得失去焦点事件 1.自定义类继承自QLineEdit 2.重写 focusOutEvent 3.使用 二、失去焦点事件问题 1.问题描述 2.问题解决 三、源码分享 lineed…...

Remora

Remora Remora 模型能够独立于碱基识别过程预测甲基化/修饰碱基的状态。Remora 仓库专注于准备修饰碱基训练数据和训练修饰碱基模型。此外,还提供了一些用于运行 Remora 模型和调查原始信号的功能。对于生产环境中的修饰碱基识别,建议使用 Dorado <https://github.com/na…...

MySQL中将一个字符串字段按层级树状展开

水善利万物而不争&#xff0c;处众人之所恶&#xff0c;故几于道&#x1f4a6; 文章目录 需求1.分析2.实现3.思路刨析表结构和数据 需求 数据库中有个字段如下 如何将其转换为如下形式&#xff1a; 1.分析 1.他的层级个数是不确定的&#xff0c;也就是说有的有2层有的有5…...

vue面试题8|[2024-11-14]

问题1&#xff1a;什么是渐进式框架? vue.js router vuex element ...插件 vue.js 渐0 router 渐1 vuex 渐2 vue.js只是一个核心库&#xff0c;比如我再添加一个router或者vuex&#xff0c;不断让项目壮大&#xff0c;就是渐进式框…...

ARM(安谋) China处理器

0 Preface/Foreword 0.1 参考博客 Cortex-M23/M33与STAR-MC1星辰处理器 ARM China&#xff0c;2018年4月established&#xff0c;独立运行。 1 处理器类型 1.1 周易AIPU 1.2 STAR-MC1&#xff08;星辰处理器&#xff09; STAT-MC1&#xff0c;主要为满足AIOT应用性能、功…...

基于python Django的boss直聘数据采集与分析预测系统,爬虫可以在线采集,实时动态显示爬取数据,预测基于技能匹配的预测模型

本系统是基于Python Django框架构建的“Boss直聘”数据采集与分析预测系统&#xff0c;旨在通过技能匹配的方式对招聘信息进行分析与预测&#xff0c;帮助求职者根据自身技能找到最合适的职位&#xff0c;同时为招聘方提供更精准的候选人推荐。系统的核心预测模型基于职位需求技…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

掌握 HTTP 请求:理解 cURL GET 语法

cURL 是一个强大的命令行工具&#xff0c;用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中&#xff0c;cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...