机器学习(1)
一、机器学习
机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)的一个分支,它致力于开发能够从数据中学习并改进性能的算法和模型。机器学习的核心思想是通过数据和经验自动优化算法,而不是通过显式的编程规则。
1.1、机器学习的基本概念
-
数据:机器学习的基础是数据。数据可以是结构化的(如数据库中的表格数据)或非结构化的(如文本、图像、音频等)。
-
模型:模型是机器学习算法的核心,它是一个数学表示,用于从输入数据中学习并做出预测或决策。
-
学习:学习是指模型通过数据进行训练,调整其内部参数以最小化预测误差的过程。
-
特征:特征是数据中的变量或属性,模型使用这些特征来进行预测或分类。
-
标签:标签是数据中的目标变量,模型通过学习特征和标签之间的关系来进行预测。
1.2、机器学习的分类
- 监督学习
- 半监督学习
- 无监督学习
- 强化学习
二、机器学习步骤
- 收集数据:数据是机器学习的基础。
- 准备数据:高质量的数据才能提高模型精准度。
- 训练模型:对处理后的数据进行训练,并留存部分数据用作验证。
- 评估模型:对模型进行验证,确定模型的精准度。
- 提高性能:对代码和模型进行优化。
2.1、前期准备——scikit-learn的安装
执行下面的代码
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn
或
pip install scikit-learn
2.2、数据集
2.2.1、数据集的分类
- 玩具数据集:轻量的数据集,直接在sklearn库本地,无需下载

示例:
from sklearn.datasets import load_iris # type: ignoreiris = load_iris() # type: ignore
print(iris.data)
- 现实数据集:数据量大,需要从网络上下载

from sklearn.datasets import fetch_20newsgroups #这是一个20分类的数据news = fetch_20newsgroups(data_home=None,subset='all')
print(len(news.data))
2.2.2、数据集的操作
# data 特征
# feature_names 特征描述
# target 目标
# target_names 目标描述
# DESCR 数据集的描述
# filename 下后到本地保存后的文件名
2.2.3、读取本地文件
本地csv文件
import pandas as pd # type: ignoredata = pd.read_csv('../dataset/ss.csv')
print(data)
本地ecxel文件
在读取excel文件时,需要使用openpyxl来读取,
我是用pip命令来安装的该引擎
pip install openpyxl
import pandas as pd# type: ignore# 指定使用 openpyxl 引擎来读取 Excel 文件
data = pd.read_excel('../dataset/ss.xlsx', engine='openpyxl')
# print(data)# 选择特定的列
x = data.iloc[:, [0, 1, 2]]
y = data.iloc[:, [-2]]# print(x)
print(y)
2.2.4、数据集的划分
数据集划分函数
from sklearn.model_selection import train_test_split # type: ignore
参数注释
参数
(1) *array
这里用于接收1到多个"列表、numpy数组、稀疏矩阵或padas中的DataFrame"。
(2) **options, 重要的关键字参数有:
test_size 值为0.0到1.0的小数,表示划分后测试集占的比例
random_state 值为任意整数,表示随机种子,使用相同的随机种子对相同的数据集多次划分结果是相同的。否则多半不同
strxxxx 分层划分,填y
2 返回值说明
返回值为列表list, 列表长度与形参array接收到的参数数量相关联, 形参array接收到的是什么类型,list中对应被划分出来的两部分就是什么类型
list数据数据划分
import numpy as np# type: ignore
from sklearn.model_selection import train_test_split# type: ignoreX=[[11,2,3,31,111],[12,2,3,32,112],[1,23,3,33,113],[14,2,3,34,114],[15,2,3,35,115],[16,2,3,36,116],[1,23,3,36,117],[1,23,3,316,118],[1,23,3,326,119],[1,23,3,336,120]
]
y=[1,1,1,1,1,2,2,2,2,2]
# 打印生成的数据
print("随机生成的x数据:")
print(X)
print("标签y:")
print(y)# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(X, y, train_size=0.8, stratify=y)# 打印划分结果
print("训练集 x_train:\n")
print(x_train)
print("测试集 x_test:\n")
print(x_test)
print("训练集标签 y_train:\n")
print(y_train)
print("测试集标签 y_test:\n")
print(y_test)
ndarray的数据集划分
from sklearn.model_selection import train_test_split# type: ignore
import numpy as np# type: ignorex = np.arange(100).reshape(50,2)
# print(x)
x_train,x_test = train_test_split(x,test_size=0.8,random_state=42)
print(x_train)
print("----------------------------------")
print(x_test)
dataFrame的数据集划分
import numpy as np# type: ignore
import pandas as pd# type: ignore
from sklearn.model_selection import train_test_split# type: ignore# 数据集的划分
data = np.arange(1,100).reshape(33, 3)
data = pd.DataFrame(data,columns=['a','b','c'])
# print(data)
x_train,x_test = train_test_split(data,test_size=0.3)
print("\n",x_train)
print("--------------------------")
print("\n",x_test)
玩具数据集划分
# 鸢尾花数据集划分
from sklearn import datasets# type: ignore
from sklearn.model_selection import train_test_split# type: ignoreiris = datasets.load_iris()
x = iris.data
y = iris.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=4)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
print(iris.feature_names)
print(iris.target_names)
现实数据集划分
import numpy as np# type: ignorefrom sklearn.datasets import fetch_20newsgroups# type: ignore
from sklearn.model_selection import train_test_split# type: ignorenew_date = fetch_20newsgroups(data_home='../dataset/',subset='train')
# print(new_date.data[0])x_train,x_test,y_train,y_test = train_test_split(new_date.data,new_date.target,test_size=0.2,random_state=666)
print(np.array(x_train).shape)
print(np.array(x_test).shape)
print(np.array(y_train).shape)
print(np.array(y_test).shape)print(new_date.target_names)
2.3、特征工程
特征工程api
# DictVectorizer 字典特征提取
# CountVectorizer 文本特征提取
# TfidfVectorizer TF-IDF文本特征词的重要程度特征提取
# MinMaxScaler 归一化
# StandardScaler 标准化
# VarianceThreshold 底方差过滤降维
# PCA 主成分分析降维
#转换器对象调用fit_transform()进行转换, 其中fit用于计算数据,transform进行最终转换fit_transform()可以使用fit()和transform()代替fit_transform()、fit()和transform()之间的区别1. fit()
作用: fit() 方法用于计算数据集的统计信息(如均值、方差等),以便后续的转换操作。
返回值: 无返回值,直接在对象内部存储计算结果。
适用场景: 当你需要对训练数据集进行统计信息的计算时使用。2. transform()
作用: transform() 方法使用 fit() 计算的统计信息对数据集进行转换。
返回值: 返回转换后的数据集。
适用场景: 当你需要对训练数据集或测试数据集进行相同的转换时使用。3. fit_transform()
作用: fit_transform() 方法结合了 fit() 和 transform() 的功能,先计算统计信息,然后对数据集进行转换。
返回值: 返回转换后的数据集。
适用场景: 当你需要对训练数据集进行一次性计算和转换时使用。
字典的特征提取和数据集划分
from sklearn.feature_extraction import DictVectorizer# type: ignore
from sklearn.model_selection import train_test_split# type: ignoredata_dict = [{'city': '北京', 'count':2300,'tempertrye': 41},{'city': '上海', 'count':2300,'tempertrye': 39}, {'city': '深圳', 'count':2750,'tempertrye': 30},{'city': '广州', 'count':2500,'tempertrye': 40},{'city': '杭州', 'count':2800,'tempertrye': 33},{'city': '西安', 'count':2700,'tempertrye': 28},{'city': '西安', 'count':2700,'tempertrye': 28}
]# sparse=False:表示返回完整的矩阵,True:表示返回稀疏矩阵
model = DictVectorizer(sparse=False)
data_new = model.fit_transform(data_dict)
# print(data_new)
x_train,y_train = train_test_split(data_new,test_size=0.2,random_state=666)
print(x_train)
print('------------------------------------------------------------------------------')
print(y_train)
文本特征提取
from sklearn.feature_extraction.text import CountVectorizercorpus = ['I love machine learning.Its awesome.', 'Its a amazon book', 'Amazon is a great company']# 创建一个词频提取对象
vectorizer = CountVectorizer(stop_words=['amzzon'])
# 提取特征词频
X = vectorizer.fit_transform(corpus)print(X)print(X.toarray())
# 打印特征词频
print(vectorizer.get_feature_names_out())
CountVectorizer 中文本特征提取
中文提取需要用到库jieba
使用下面的命令进行安装
pip install jieba
import jieba
from sklearn.feature_extraction.text import CountVectorizer
# arr = list(jieba.cut("我爱北京天安门"))
# print (arr)
# str01 = ' '.join(arr)
# print (str01)
def my_cut(text):#传入没有断词的文本,用jieba分词工具转化为数据容器,然后把数据容器中的元素用空格连接起来return ' '.join(list(jieba.cut(text)))corpus = ['我爱北京天安门','我爱成都天府广场']
# 创建一个词频提取对象
vectorizer = CountVectorizer(stop_words=[])
# 提取词频
data = [my_cut(el) for el in corpus]
x = vectorizer.fit_transform(data)
# print(x)
# print(x.toarray())
print(vectorizer.get_feature_names_out())data02 = pd.DataFrame(x.toarray(),columns=vectorizer.get_feature_names_out())
print(data02)
TfidfVectorizer TF-IDF文本特征词的重要程度特征提取
import jieba
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizerdef cut_words(text):return " ".join(list(jieba.cut(text)))data = ["教育学会会长期间,坚定支持民办教育事业!", "扶持民办,学校发展事业","事业做出重大贡献!"]
data_new = [cut_words(v) for v in data]transfer = TfidfVectorizer(stop_words=['期间', '做出',"重大贡献"])
data_final = transfer.fit_transform(data_new)pd.DataFrame(data_final.toarray(), columns=transfer.get_feature_names_out())
无量纲化
MinMaxScaler 归一化
data = [[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4]
]
tran = MinMaxScaler(feature_range(1,2))
data = tran.fit_transfrom(data)
print(data)
StandardScaler 标准化
import numpy as np
from sklearn.preprocessing import StandardScaler# 创建一个示例数据集
X = np.array([[1, 2], [3, 4], [5, 6]])# 初始化 StandardScaler
scaler = StandardScaler()# 对训练数据进行 fit_transform
X_train_scaled = scaler.fit_transform(X)# 打印标准化后的训练数据
print("标准化后的训练数据:")
print(X_train_scaled)# 创建一个新的测试数据集
X_test = np.array([[7, 8], [9, 10]])# 对测试数据进行 transform
X_test_scaled = scaler.transform(X_test)# 打印标准化后的测试数据
print("标准化后的测试数据:")
print(X_test_scaled)
2.4、特征降维
VarianceThreshold 低方差过滤特征选择
# 1、获取数据,data是一个DataFrame,可以是读取的csv文件
data=pd.DataFrame([[10,11],[11,13],[11,11],[11,15],[11,91],[11,13],[11,12],[11,16]])
print("data:\n", data)
# 2、实例化一个转换器类
transfer = VarianceThreshold(threshold=1)#0.1阈值
# 3、调用fit_transform
data_new = transfer.fit_transform(data)
print("data_new:\n",data_new)
PCA降维
from sklearn.dec**** import PCAdata = [[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4]
]
pac = PCA(n_com**** = 0.95)data = pca.fit_transfrom(data)print(f"降维后的数据为:{data}"}
相关文章:
机器学习(1)
一、机器学习 机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)的一个分支,它致力于开发能够从数据中学习并改进性能的算法和模型。机器学习的核心思想是通过数据和经验自动优化算法ÿ…...
深入理解 Redis跳跃表 Skip List 原理|图解查询、插入
1. 简介 跳跃表 ( skip list ) 是一种有序数据结构,通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。 在 Redis 中,跳跃表是有序集合键的底层实现之一,那么这篇文章我们就来讲讲跳跃表的实现原理。 2. …...
Halcon HImage 与 Qt QImage 的相互转换(修订版)
很久以前,我写过一遍文章来介绍 HImage 和 QImage 之间的转换方法。(https://blog.csdn.net/liyuanbhu/article/details/91356988) 这个代码其实是有些问题的。因为我们知道 QImage 中的图像数据不一定是连续的,尤其是图像的宽度…...
【Golang】——Gin 框架中的模板渲染详解
Gin 框架支持动态网页开发,能够通过模板渲染结合数据生成动态页面。在这篇文章中,我们将一步步学习如何在 Gin 框架中配置模板、渲染动态数据,并结合静态资源文件创建一个功能完整的动态网站。 文章目录 1. 什么是模板渲染?1.1 概…...
CSS:导航栏三角箭头
用CSS实现导航流程图的样式。可根据自己的需求进行修改,代码精略的写了一下。 注:场景一和场景二在分辨率比较低的情况下会有一个1px的缝隙不太优雅,自行处理。有个方法是直接在每个外面包一个DIV,用动态样式设置底色。 场景一、…...
onlyoffice Command service(命令服务)使用示例
一、说明 文档在这里:https://api.onlyoffice.com/docs/docs-api/additional-api/command-service/ 命令服务提供有几个简单的接口封装。也提供了前端和后端同时操作文档的可能。 二、正文 命令服务地址:https://documentserver/coauthoring/Com…...
QSS 设置bug
问题描述: 在QWidget上add 一个QLabel,但是死活不生效 原因: c 主程序如下: QWidget* LOGO new QWidget(logo_wnd);LOGO->setFixedSize(logo_width, 41);LOGO->setObjectName("TittltLogo");QVBoxLayout* tit…...
交换排序——快速排序
交换排序——快速排序 7.7 交换排序——快速排序快速排序概念c语言的库函数qsort快速排序框架quickSort 7.7 交换排序——快速排序 快速排序概念 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法(下文简称快排),其基本思想为&a…...
nodejs入门(1):nodejs的前后端分离
一、引言 我关注nodejs还是从前几年做了的一个电力大数据展示系统开始的,当然,我肯定是很多年的计算机基础的,万变不离其宗。 现在web网站都流行所谓的前后端结构,不知不觉我也开始受到这个影响,以前都是前端直接操作…...
笔记|M芯片MAC (arm64) docker上使用 export / import / commit 构建amd64镜像
很简单的起因,我的东西最终需要跑在amd64上,但是因为mac的架构师arm64,所以直接构建好的代码是没办法跨平台运行的。直接在arm64上pull下来的docker镜像也都是arm64架构。 检查镜像架构: docker inspect 8135f475e221 | grep Arc…...
gorm框架
连接 需要下载mysql的驱动 go get gorm.io/driver/mysql go get gorm.io/gorm 约定 主键:GORM 使用一个名为ID 的字段作为每个模型的默认主键。表名:默认情况下,GORM 将结构体名称转换为 snake_case 并为表名加上复数形式。 例如…...
免费送源码:Java+Springboot+MySQL Springboot多租户博客网站的设计 计算机毕业设计原创定制
Springboot多租户博客网站的设计 摘 要 博客网站是当今网络的热点,博客技术的出现使得每个人可以零成本、零维护地创建自己的网络媒体,Blog站点所形成的网状结构促成了不同于以往社区的Blog文化,Blog技术缔造了“博客”文化。本文课题研究的“…...
【ASR技术】WhisperX安装使用
介绍 WhisperX 是一个开源的自动语音识别(ASR)项目,由 m-bain 开发。该项目基于 OpenAI 的 Whisper 模型,通过引入批量推理、强制音素对齐和语音活动检测等技术。提供快速自动语音识别(large-v2 为 70 倍实时…...
【计算机网络】协议定制
一、结构化数据传输流程 这里涉及协议定制、序列化/反序列化的知识 对于序列化和反序列化,有现成的解决方案:①json ②probuff ③xml 二、理解发送接收函数 我们调用的所有发送/接收函数,根本就不是把数据发送到网络中!本质都是…...
【SQL】mysql常用命令
为方便查询,特整理MySQL常用命令。 约定:$后为Shell环境命令,>后为MySQL命令。 1 常用命令 第一步,连接数据库。 $ mysql -u root -p # 进入MySQL bin目录后执行,回车后输入密码连接。# 常用参数&…...
阿里云引领智算集群网络架构的新一轮变革
阿里云引领智算集群网络架构的新一轮变革 云布道师 11 月 8 日~ 10 日在江苏张家港召开的 CCF ChinaNet(即中国网络大会)上,众多院士、教授和业界技术领袖齐聚一堂,畅谈网络未来的发展方向,聚焦智算集群网络的创新变…...
几何合理的分片段感知的3D分子生成 FragGen - 评测
FragGen 来源于 2024 年 3 月 25 日 预印本的文章,文章题目是 Deep Geometry Handling and Fragment-wise Molecular 3D Graph Generation, 作者是 Odin Zhang,侯廷军,浙江大学药学院。FragGen 是一个基于分子片段的 3D 分子生成模…...
Python爬虫下载新闻,Flask展现新闻(2)
上篇讲了用Python从新闻网站上下载新闻,本篇讲用Flask展现新闻。关于Flask安装网上好多教程,不赘述。下面主要讲 HTML-Flask-数据 的关系。 简洁版 如图,页面简单,主要显示新闻标题。 分页,使用最简单的分页技术&…...
监控易监测对象及指标之:全面监控华为FusionInsight服务
随着大数据技术的广泛应用,华为FusionInsight以其卓越的性能和稳定性,成为了众多企业处理和分析海量数据的首选平台。然而,为了确保FusionInsight服务的持续稳定运行,对其进行全面监控至关重要。本文基于监控易工具,对…...
SQL面试题——蚂蚁SQL面试题 会话分组问题
会话分组问题 这里的分组不是简单的分组,而是会话的分组。 比如说,进入一个网站以后,可以连续的点击很多个页面,后台会记录用户的行为日志; 如果T日上午连续点击几个页面后退出了网站,直到第二天的下午才再次进入网站,单单从时间线上来看,昨天退出的那条日志跟今天进…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...
Python环境安装与虚拟环境配置详解
本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南,适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者,都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...
【题解-洛谷】P10480 可达性统计
题目:P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图,分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M,接下来 M M M 行每行两个整数 x , y x,y x,y,表示从 …...
