量化交易系统开发-实时行情自动化交易-4.1.3.A股平均趋向指数(ADX)实现
19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。
接下来继续说说A股平均趋向指数实现。
平均趋向指数(ADX,Average Directional Index)是一种衡量市场趋势强度的技术指标,广泛用于判断 A 股市场的趋势强弱,而不判断趋势方向。ADX 是基于正向趋向指标 (+DI) 和负向趋向指标 (-DI) 计算得出的一个趋势强度指标,通常用于确认趋势是否强劲。以下是通过 Python 和 Tushare 实现 A 股市场的 ADX 指标的代码示例。
1. ADX 的基本组成
-
+DI(Positive Directional Indicator):衡量价格上升的强度。
-
-DI(Negative Directional Indicator):衡量价格下降的强度。
-
ADX:基于 +DI 和 -DI 计算的指数,用于衡量趋势的强度,而非方向。
2. 获取 A 股数据
使用 Tushare 获取 A 股的股票数据,确保你有 Tushare 的 API token。
import tushare as ts
import pandas as pd
import matplotlib.pyplot as plt# 设置 Tushare token
ts.set_token('your_tushare_token')
pro = ts.pro_api()# 获取 A 股的日线数据(以贵州茅台为例)
def get_a_stock_data(stock_code, start_date, end_date):df = pro.daily(ts_code=stock_code, start_date=start_date, end_date=end_date)df = df[['trade_date', 'high', 'low', 'close']]df['trade_date'] = pd.to_datetime(df['trade_date'])df.set_index('trade_date', inplace=True)df = df.sort_index()return df# 获取贵州茅台(600519.SH)的日线数据
stock_code = '600519.SH'
start_date = '20200101'
end_date = '20221231'
stock_data = get_a_stock_data(stock_code, start_date, end_date)
3. 计算 ADX 指标
# 计算 ADX 指标
def calculate_adx(data, window=14):"""计算平均趋向指数 (ADX) 指标。:param data: 股票数据的 pandas DataFrame,必须包含 'high', 'low', 'close' 列:param window: ADX 的窗口大小,通常为 14:return: 包含 ADX 指标的 DataFrame"""# 计算 True Range (TR)data['tr1'] = data['high'] - data['low']data['tr2'] = abs(data['high'] - data['close'].shift(1))data['tr3'] = abs(data['low'] - data['close'].shift(1))data['TR'] = data[['tr1', 'tr2', 'tr3']].max(axis=1)# 计算 +DM 和 -DMdata['+DM'] = np.where((data['high'] - data['high'].shift(1)) > (data['low'].shift(1) - data['low']), data['high'] - data['high'].shift(1), 0)data['+DM'] = np.where(data['+DM'] < 0, 0, data['+DM'])data['-DM'] = np.where((data['low'].shift(1) - data['low']) > (data['high'] - data['high'].shift(1)), data['low'].shift(1) - data['low'], 0)data['-DM'] = np.where(data['-DM'] < 0, 0, data['-DM'])# 计算平滑的 TR, +DM, -DMdata['TR_smooth'] = data['TR'].rolling(window=window).sum()data['+DM_smooth'] = data['+DM'].rolling(window=window).sum()data['-DM_smooth'] = data['-DM'].rolling(window=window).sum()# 计算 +DI 和 -DIdata['+DI'] = 100 * (data['+DM_smooth'] / data['TR_smooth'])data['-DI'] = 100 * (data['-DM_smooth'] / data['TR_smooth'])# 计算 DX 和 ADXdata['DX'] = 100 * abs(data['+DI'] - data['-DI']) / (data['+DI'] + data['-DI'])data['ADX'] = data['DX'].rolling(window=window).mean()return data# 计算贵州茅台的 ADX 指标
stock_data = calculate_adx(stock_data)# 打印结果
data[['high', 'low', 'close', '+DI', '-DI', 'ADX']]# 绘制 ADX 图表
plt.figure(figsize=(12, 8))
plt.subplot(2, 1, 1)
plt.plot(stock_data.index, stock_data['close'], label='Close Price', color='blue')
plt.title(f'{stock_code} Close Price')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.grid()plt.subplot(2, 1, 2)
plt.plot(stock_data.index, stock_data['+DI'], label='+DI', color='green')
plt.plot(stock_data.index, stock_data['-DI'], label='-DI', color='red')
plt.plot(stock_data.index, stock_data['ADX'], label='ADX', color='blue')
plt.title('ADX Indicator')
plt.xlabel('Date')
plt.ylabel('Value')
plt.legend()
plt.grid()plt.tight_layout()
plt.show()
4. 代码解释
-
获取数据:我们使用 Tushare 的
pro.daily接口获取贵州茅台的日线数据,数据包括最高价、最低价和收盘价。 -
计算 True Range (TR):TR 是衡量市场波动的真实范围,计算方式为最高价与最低价的差值、前一日收盘价与最高价的差值、前一日收盘价与最低价的差值三者中的最大值。
-
+DM 和 -DM:+DM 和 -DM 分别表示向上和向下的价格动向,用于衡量价格上涨和下跌的强度。
-
+DI 和 -DI:+DI 和 -DI 分别表示正向和负向的趋向指标,表示价格上涨或下跌的强度相对于真实范围的百分比。
-
DX 和 ADX:DX 是 +DI 和 -DI 的差值的绝对值除以其和的百分比,用于衡量趋势的强弱。ADX 是 DX 的移动平均值,表示趋势强度的平滑值。
5. 使用 ADX 的交易信号
-
趋势强度判断:当 ADX 高于 25 时,通常表示市场处于强趋势状态,无论是上升趋势还是下降趋势;当 ADX 低于 20 时,表示市场处于无趋势状态或震荡阶段。
-
结合 +DI 和 -DI:当 +DI 高于 -DI 且 ADX 上升时,表明上升趋势强烈,可以考虑买入;当 -DI 高于 +DI 且 ADX 上升时,表明下跌趋势强烈,可以考虑卖出。
6. 总结
平均趋向指数(ADX)是 A 股市场中衡量趋势强度的重要工具,通过分析 +DI、-DI 和 ADX 的变化,交易者可以判断当前市场是否具有明确的趋势,以及趋势的强度。ADX 常与其他技术指标结合使用,以便更好地识别市场的交易机会和风险。
相关文章:
量化交易系统开发-实时行情自动化交易-4.1.3.A股平均趋向指数(ADX)实现
19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。 接下来继续说说A股平均趋向指数实现。 …...
tcp的网络惊群问题
1. SO_REUSEPORT 可以解决epoll的惊群问题 但是,现在的 TCP Server,一般都是 多进程多路IO复用(epoll) 的并发模型,比如我们常用的 nginx 。如果使用 epoll 去监听 accept socket fd 的读事件,当有新连接建立时,所有进…...
云原生之运维监控实践-使用Prometheus与Grafana实现对Nginx和Nacos服务的监测
背景 如果你要为应用程序构建规范或用户故事,那么务必先把应用程序每个组件的监控指标考虑进来,千万不要等到项目结束或部署之前再做这件事情。——《Prometheus监控实战》 去年写了一篇在Docker环境下部署若依微服务ruoyi-cloud项目的文章,当…...
软考教材重点内容 信息安全工程师 第 4 章 网络安全体系与网络安全模型
4,1 网络安全体系的主要特征: (1)整体性。网络安全体系从全局、长远的角度实现安全保障,网络安全单元按照一定的规则,相互依赖、相互约束、相互作用而形成人机物一体化的网络安全保护方式。 (2)协同性。网络安全体系依赖于多种安全机制,通过各…...
机器学习——期末复习 重点题归纳
第一题 问题描述 现有如下数据样本: 编号色泽敲声甜度好瓜1乌黑浊响高是2浅白沉闷低否3青绿清脆中是4浅白浊响低否 (1)根据上表,给出属于对应假设空间的3个不同假设。若某种算法的归纳偏好为“适应情形尽可能少”,…...
MYSQL——数据更新
一、插入数据 1.插入完整的数据记录 在MYSQL中,使用SQL语句INSERT插入一条完整的记录,语法如下: INSERT INTO 表名 [(字段名1[,...字段名n])] VALUES (值1[...,值n]); 表名——用于指定要插入的数据的表名 字段名——用于指定需要插入数据…...
Vite 基础理解及应用
文章目录 概要Vite基础知识点1. 快速启动和热更新热更新原理 2. 基于ES模块的构建3. 对不同前端框架的支持 vite.config.js配置实例1. 基本结构2. 服务器相关配置3. 输入输出路径配置4. 打包优化配置 项目构建一、项目初始化二、项目结构理解三、CSS处理四、静态资源处理五、构…...
[JAVA]用MyBatis框架实现一个简单的数据查询操作
基于在前面几章我们已经学习了对MyBatis进行环境配置,并利用SqlSessionFactory核心接口生成了sqlSession对象对数据库进行交互,执行增删改查操作。这里我们就先来学习如何对数据进行查询的操作,具体查询操作有以下几个步骤 创建实体类创建Ma…...
CSS 样式的优先级?
在CSS中,样式的优先级决定了当多个样式规则应用于同一个元素时,哪个样式会被最终使用。以下是一些决定CSS样式优先级的规则: 就近原则: 最后应用在元素上的样式具有最高优先级。这意味着如果两个选择器都应用了相同的样式…...
Linux驱动开发快速入门——字符设备驱动(直接操作寄存器设备树版)
Linux驱动开发快速入门——字符设备驱动 前言 笔者使用开发板型号:正点原子的IMX6ULL-alpha开发板。ubuntu版本为:20.04。写此文也是以备忘为目的。 字符设备驱动 本小结将以直接操作寄存器的方式控制一个LED灯,可以通过read系统调用可以…...
数据结构《栈和队列》
文章目录 一、什么是栈?1.1 栈的模拟实现1.2 关于栈的例题 二、什么是队列?2.2 队列的模拟实现2.2 关于队列的例题 总结 提示:关于栈和队列的实现其实很简单,基本上是对之前的顺序表和链表的一种应用,代码部分也不难。…...
C# 超链接控件LinkLabel无法触发Alt快捷键
在C#中,为控件添加快捷键的方式有两种,其中一种就是Windows中较为常见的Alt快捷键,比如运行对话框,记事本菜单等。只需要按下 Alt 框号中带下划线的字母即可触发该控件的点击操作。如图所示 在C#开发中,实现类似的操作…...
JVM类加载过程-Loading
一、Class对象的生命周期 .class文件是如何加载到内存中:.class文件是ClassLoader通过IO将文件读到内存,再通过双亲委派的模式进行Loading,再Linking、以及Initializing,代码调用等一系列操作后,进行GC,组成完整的生命周期; 二、双亲委派模式(Loading的过程): 1、类…...
2024年11月19日Github流行趋势
项目名称:build-your-own-x 项目维护者:danistefanovic, rohitpaulk, sarupbanskota 等项目介绍:通过从零开始重新创建你最喜欢的技术来掌握编程。项目star数:312,081项目fork数:29,004 项目名称:freqtrad…...
详细描述一下Elasticsearch索引文档的过程?
大家好,我是锋哥。今天分享关于【详细描述一下Elasticsearch索引文档的过程?】面试题。希望对大家有帮助; 详细描述一下Elasticsearch索引文档的过程? Elasticsearch的索引文档过程是其核心功能之一,涉及将数据存储到…...
基于css的Grid布局和vue实现点击左移右移轮播过渡动画效果
直接上代码,以下代码基于vue2,需要Vue3或者react可以使用国内直连GPT/Claude来帮你转换下 代码如下: // ScrollCardsGrid.vue <template><div class"scroll-cards-container"><!-- 左箭头 --><div v-show"showLef…...
HarmonyOS NEXT应用元服务开发Intents Kit(意图框架服务)习惯推荐方案概述
一、习惯推荐是HarmonyOS学习用户的行为习惯后做出的主动预测推荐。 1.开发者将用户在应用/元服务内的使用行为向HarmonyOS共享,使得HarmonyOS可以基于共享的数据学习用户的行为习惯。 2.在HarmonyOS学习到用户的行为习惯后,会给用户推荐相应功能&#x…...
【AtCoder】Beginner Contest 380-F.Exchange Game
题目链接 Problem Statement Takahashi and Aoki will play a game using cards with numbers written on them. Initially, Takahashi has N N N cards with numbers A 1 , … , A N A_1, \ldots, A_N A1,…,AN in his hand, Aoki has M M M cards with numbers B …...
30. 并发编程
一、什么是多任务 如果一个操作系统上同时运行了多个程序,那么称这个操作系统就是 多任务的操作系统,例如:Windows、Mac、Android、IOS、Harmony 等。如果是一个程序,它可以同时执行多个事情,那么就称为 多任务的程序。…...
【包教包会】CocosCreator3.x框架——带翻页特效的场景切换
一、效果演示 二、如何获取 1、https://gitee.com/szrpf/TurnPage 2、解压,导入cocos creator(版本3.8.2),可以直接运行Demo演示 三、算法思路 1、单场景 页面预制体 通过loadScene来切换页面,无法实现页面特效。…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
