基于YOLOv8深度学习的独居老人情感状态监护系统(PyQt5界面+数据集+训练代码)
本研究提出了一种创新的独居老人情感状态监护系统,基于YOLOV8深度学习模型,旨在通过对老年人面部表情的实时监测与分析,来精准识别其情感变化,从而提高独居老人的生活质量,确保其心理健康。本系统通过整合先进的YOLOV8算法进行图像检测与情感识别,具备高效的情感状态判断能力。YOLOV8模型在情感识别领域具有出色的性能表现,能够在复杂场景中准确定位和分析面部表情,为情感状态监控提供了坚实的技术支持。
在系统架构方面,研究采用了基于PyQt5的用户界面开发框架,界面设计简洁直观,操作流程友好,便于用户快速上手。系统通过数据集的全面训练和测试,不仅能准确检测老年人面部表情的细微变化,还能对多种情感状态进行精准分类,如快乐、悲伤、愤怒、焦虑等。此外,系统具有强大的实时监控功能,能够持续追踪老年人的情绪变化。
为了确保系统的实际应用价值,本研究通过多个独居老人的数据集进行训练与测试,验证了其在情感状态识别中的高准确性和稳定性。实验结果表明,该系统在实时性、鲁棒性与精确性等关键性能指标上均表现优异,能够适应各种复杂的家庭或养老院环境。进一步的应用分析显示,该系统不仅可以有效提升老年人的生活质量,还可以为社会老龄化问题提供一种技术支持方案,具有广阔的应用前景。
本系统未来的优化方向可能包括进一步提升情感识别的精度,扩展支持的情感种类,甚至结合音频数据进行多模态情感分析。同时,增加与智能家居、健康监测设备的联动性,打造更加全面的老年人情感状态监护网络,将为独居老年人群体提供更全面、更安全的生活环境。
算法流程
项目数据
通过搜集关于数据集为各种各样的老人情感状态相关图像,并使用Labelimg标注工具对每张图片进行标注,分8个检测类别,分别是’老人愤怒’,’老人鄙视’,’老人厌恶’,’老人恐惧’,’老人高兴’,’老人平和’,’老人悲伤’,’老人惊讶’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。
注意:这里的中心点坐标、宽和高都是相对数据!!!
存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。
完成后可进行后续的yolo训练方面的操作。
模型训练
模型的训练、评估与推理
1.YOLOv8的基本原理
YOLOv8是一个SOTA模型,它建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性,使其成为实现目标检测、图像分割、姿态估计等任务的最佳选择。其具体创新点包括一个新的骨干网络、一个新的Ancher-Free检测头和一个新的损失函数,可在CPU到GPU的多种硬件平台上运行。
YOLOv8是Yolo系列模型的最新王者,各种指标全面超越现有对象检测与实例分割模型,借鉴了Yolov5、Yolov6、YoloX等模型的设计优点,在全面提升改进Yolov5模型结构的基础上实现,同时保持了Yolov5工程化简洁易用的优势。
Yolov8模型网络结构图如下图所示:
2.数据集准备与训练
本研究使用了包含各种老年情绪状态相关图像的数据集,并通过Labelimg标注工具对每张图像中的目标边框(Bounding Box)及其类别进行标注。然后主要基于YOLOv8n这种模型进行模型的训练,训练完成后对模型在验证集上的表现进行全面的性能评估及对比分析。模型训练和评估流程基本一致,包括:数据集准备、模型训练、模型评估。本次标注的目标类别为老年情绪状态,数据集中共计包含25262张图像,其中训练集占17101张,验证集占5406张,测试集占2755张。部分图像如下图所示:
部分标注如下图所示:
图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入datasets目录下。
接着需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。
data.yaml的具体内容如下:
train: “E:/ElderlyEmotionsObjective_v8/datasets/train/images”训练集的路径
val: “E:/ElderlyEmotionsObjective_v8/datasets//valid/images”验证集的路径
test: “E:/ElderlyEmotionsObjective_v8/datasets/test/images”测试集的路径
nc: 8 模型检测的类别数,共有8个类别。
names:
[
“Anger”,
“Contempt”,
“Disgust”,
“Fear”,
“Happy”,
“Neutral”,
“Sad”,
“Surprise”,
]
这个文件定义了用于模型训练和验证的数据集路径,以及模型将要检测的目标类别。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小(根据内存大小调整,最小为1)。
CPU/GPU训练代码如下:
加载名为 yolov8n.pt 的预训练YOLOv8模型,yolov8n.pt是预先训练好的模型文件。
使用YOLO模型进行训练,主要参数说明如下:
(1)data=data_yaml_path: 指定了用于训练的数据集配置文件。
(2)epochs=150: 设定训练的轮数为150轮。
(3)batch=4: 指定了每个批次的样本数量为4。
(4)optimizer=’SGD’):SGD 优化器。
(7)name=’train_v8′: 指定了此次训练的命名标签,用于区分不同的训练实验。
3.训练结果评估
在深度学习的过程中,我们通常通过观察损失函数下降的曲线来了解模型的训练情况。对于YOLOv8模型的训练,主要涉及三类损失:定位损失(box_loss)、分类损失(cls_loss)以及动态特征损失(dfl_loss)。训练完成后,相关的训练过程和结果文件会保存在 runs/ 目录下,具体如下:
各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
训练结果如下:
这张图展示了YOLOv8模型在训练和验证过程中的多个重要指标的变化趋势,具体如下:
train/box_loss:
(1)这是训练过程中边界框损失的变化。边界框损失用于衡量模型预测的目标框与实际目标框的差异。
(2)随着训练的进行,损失逐渐减少,表明模型在定位目标时的误差逐渐减少。
train/cls_loss:
(1)这是训练集上的分类损失。分类损失衡量模型对目标类别的预测准确性。
(2)损失值随着训练逐渐减少,表明模型在分类目标类别时的准确性逐渐提高。
train/dfl_loss:
(1)这是分布聚焦损失(distribution focal loss),用于帮助模型对目标框的精确定位。
(2)此损失通常用于边界框精度的优化,损失下降表明模型在预测边界框时的性能有所提升。
metrics/precision(B):
(1)这是训练集上的精度(precision)曲线。精度表示模型在检测到的目标中有多少是真正的目标。
(2)图中曲线表明精度随着训练的进行逐渐提高。
metrics/recall(B):
(1)这是训练集上的召回率(recall)曲线。召回率表示模型检测出的真实目标的比例。
(2)召回率逐步提高,表明模型在识别所有正类样本上的表现越来越好。
val/box_loss:
(1)这是验证集上的边界框损失曲线。
(2)与训练损失类似,验证损失的下降表明模型在验证集上也表现得越来越好。
val/cls_loss:
(1)这是验证集上的分类损失曲线。
(2)损失下降意味着模型在验证集上的分类性能有所提升。
val/dfl_loss:
(1)这是验证集上的分布聚焦损失曲线。
(2)下降趋势表明模型在验证集上定位边界框的精度在提高。
metrics/mAP50(B):
(1)这是验证集上的mAP50曲线,表示在交并比阈值为0.5时模型的平均精度(mean Average Precision)。
(2)数值越高表示模型在目标检测任务中的表现越好。
metrics/mAP50-95(B):
(1)这是验证集上的mAP50-95曲线,表示在不同交并比阈值(从0.5到0.95)下模型的平均精度。
(2)曲线平稳上升,表示模型整体性能较为稳定且表现良好。
这组图展示了模型在训练和验证过程中的表现,模型的各项损失均随着训练的进行逐渐减少,而各项指标则逐渐提高,表明模型的性能逐步优化。
这张图展示的是 Precision-Recall 曲线,用于评估模型在不同类别下的检测性能。以下是详细解释:
每条彩色曲线:
(1)代表一个特定类别的精确率和召回率之间的变化关系。
(2)图例中列出了每个类别的名称以及其平均精度(mAP@0.5)值。
(3)例如,“Happy”类别的mAP值为0.956,说明该类别在不同阈值下的平均精度较高。
蓝色粗线:
(1)代表所有类别的总体精确率-召回率曲线,并且图例中显示了总体的mAP@0.5值为0.829。
(2)这意味着模型在所有类别上的平均精度为82.9%。
mAP@0.5:
(1)平均精度(mean Average Precision),是在不同的阈值(通常为0.5)下计算的精确率和召回率的综合性能指标。
(2)图中的mAP@0.5值代表模型在该阈值下的平均表现,值越高表示模型的整体检测性能越好。
曲线形状:
(1)不同类别的曲线反映了模型在该类别下的表现。
(2)例如,“Happy”类别的曲线接近图的右上角,表明该类别的模型表现非常好,精确率和召回率都较高。
(3)而“Neutral”类别的曲线较低,表示该类别的模型表现相对较弱。
该图直观展示了模型在多个情感类别(如Anger, Contempt, Disgust, Fear, Happy, Neutral, Sad, Surprise)上的分类性能。通过分析每个类别的精确率-召回率曲线,可以帮助我们了解模型在哪些类别上表现良好,在哪些类别上还需要改进。
4.检测结果识别
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights目录下。我们可以使用该文件进行后续的推理检测。
imgTest.py 图片检测代码如下:
加载所需库:
(1)from ultralytics import YOLO:导入YOLO模型类,用于进行目标检测。
(2)import cv2:导入OpenCV库,用于图像处理和显示。
加载模型路径和图片路径:
(1)path = ‘models/best.pt’:指定预训练模型的路径,这个模型将用于目标检测任务。
(2)img_path = “TestFiles/imagetest.jpg”:指定需要进行检测的图片文件的路径。
加载预训练模型:
(1)model = YOLO(path, task=’detect’):使用指定路径加载YOLO模型,并指定检测任务为目标检测 (detect)。
(2)通过 conf 参数设置目标检测的置信度阈值,通过 iou 参数设置非极大值抑制(NMS)的交并比(IoU)阈值。
检测图片:
(1)results = model(img_path):对指定的图片执行目标检测,results 包含检测结果。
显示检测结果:
(1)res = results[0].plot():将检测到的结果绘制在图片上。
(2)cv2.imshow(“YOLOv8 Detection”, res):使用OpenCV显示检测后的图片,窗口标题为“YOLOv8 Detection”。
(3)cv2.waitKey(0):等待用户按键关闭显示窗口
此代码的功能是加载一个预训练的YOLOv8模型,对指定的图片进行目标检测,并将检测结果显示出来。
执行imgTest.py代码后,会将执行的结果直接标注在图片上,结果如下:
这段输出是基于YOLOv8模型对图片“imagetest.jpg”进行检测的结果,具体内容如下:
图像信息:
(1)处理的图像路径为:TestFiles/imagetest.jpg。
(2)图像尺寸为 640×500 像素。
检测结果:
(1)模型在该图片上检测到 1 个鄙视(”1 Contempt”)
处理速度:
(1)预处理时间:3.7 毫秒
(2)推理时间:35.5 毫秒
(3)后处理时间:53.9 毫秒
模型在约 35.5 毫秒内成功检测出图像中的 “轻蔑” 表情,并输出了检测框和相关信息。
运行效果
– 运行 MainProgram.py
1.主要功能:
(1)可用于实时检测目标图片中的独居老人情绪状态;
(2)支持图片、视频及摄像头进行检测,同时支持图片的批量检测;
(3)界面可实时显示目标位置、目标总数、置信度、用时等信息;
(4)支持图片或者视频的检测结果保存。
2.检测结果说明:
这张图表显示了基于YOLOv8模型的目标检测系统的检测结果界面。以下是各个字段的含义解释:
用时(Time taken):
(1)这表示模型完成检测所用的时间为0.023秒。
(2)这显示了模型的实时性,检测速度非常快。
目标数目(Number of objects detected):
(1)检测到的目标数目为1,表示这是当前检测到的第1个目标。
目标选择(下拉菜单):全部:
(1)这里有一个下拉菜单,用户可以选择要查看的目标类型。
(2)在当前情况下,选择的是“全部”,意味着显示所有检测到的目标信息。
类型(Type):
(1)当前选中的行为类型为 “老人高兴”,表示系统正在高亮显示检测到的“Happy”。
置信度(Confidence):
(1)这表示模型对检测到的目标属于“老人高兴”类别的置信度为99.01%。
(2)置信度反映了模型的信心,置信度越高,模型对这个检测结果越有信心。
目标位置(Object location):
(1)xmin: 0, ymin: 0:目标的左上角的坐标(xmin, ymin),表示目标区域在图像中的位置。
(2)xmax: 2421, ymax: 30125:目标的右下角的坐标(xmax, ymax),表示目标区域的边界。
这些坐标表示在图像中的目标区域范围,框定了检测到的“老人高兴”的位置。
这张图展示了独居老人情绪状态的一次检测结果,包括检测时间、检测到的种类、各行为的置信度、目标的位置信息等。用户可以通过界面查看并分析检测结果,提升独居老人情绪状态监测的效率。
3.图片检测说明
(1)老人悲伤情绪状态
(2)老人鄙视情绪状态
(3)老人愤怒情绪状态
(4)老人高兴情绪状态
(5)老人厌恶情绪状态
(6)老人惊讶情绪状态
(7)老人恐惧情绪状态
(8)老人平和情绪状态
点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹。
操作演示如下:
(1)点击目标下拉框后,可以选定指定目标的结果信息进行显示。
(2)点击保存按钮,会对检测结果进行保存,存储路径为:save_data目录下。
检测结果:系统识别出图片中的老年人情绪状态,并显示检测结果,包括总目标数、用时、目标类型、置信度、以及目标的位置坐标信息。
4.视频检测说明
点击视频按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
检测结果:系统对视频进行实时分析,检测到老年人情绪状态并显示检测结果。表格显示了视频中多个检测结果的置信度和位置信息。
这个界面展示了系统对视频帧中的多目标检测能力,能够准确识别老年人情绪状态,并提供详细的检测结果和置信度评分。
5.摄像头检测说明
点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。
检测结果:系统连接摄像头进行实时分析,检测到老年人情绪状态并显示检测结果。实时显示摄像头画面,并将检测到的行为位置标注在图像上,表格下方记录了每一帧中检测结果的详细信息。
6.保存图片与视频检测说明
点击保存按钮后,会将当前选择的图片(含批量图片)或者视频的检测结果进行保存。
检测的图片与视频结果会存储在save_data目录下。
保存的检测结果文件如下:
图片文件保存的csv文件内容如下,包括图片路径、目标在图片中的编号、目标类别、置信度、目标坐标位置。
注:其中坐标位置是代表检测框的左上角与右下角两个点的x、y坐标。
(1)图片保存
(2)视频保存
– 运行 train.py
1.训练参数设置
(1)data=data_yaml_path: 使用data.yaml中定义的数据集。
(2)epochs=150: 训练的轮数设置为150轮。
(3)batch=4: 每个批次的图像数量为4(批次大小)。
(4)name=’train_v8′: 训练结果将保存到以train_v8为名字的目录中。
(5)optimizer=’SGD’: 使用随机梯度下降法(SGD)作为优化器。
虽然在大多数深度学习任务中,GPU通常会提供更快的训练速度。
但在某些情况下,可能由于硬件限制或其他原因,用户需要在CPU上进行训练。
温馨提示:在CPU上训练深度学习模型通常会比在GPU上慢得多,尤其是像YOLOv8这样的计算密集型模型。除非特定需要,通常建议在GPU上进行训练以节省时间。
2.训练日志结果
这张图展示了使用YOLOv8进行模型训练的详细过程和结果。
训练总时长:
(1)模型在训练了150轮后,总共耗时11.101小时。
总体分析:
(1)从整体上看,所有类别的平均精度(mAP50 和 mAP50-95)都达到了 0.829,这表明模型在情感分类任务上表现良好。
(2)精度(Box(P)) 和 召回率(R) 也反映出模型在不同情感类别上的表现。较高的精度和召回率表明模型在该任务中的性能平衡较好。例如,“高兴”类的表现尤为突出,精度为 0.892,召回率为 0.865,mAP50 甚至达到 0.956。
(3)在“厌恶”和“平和”类别中,模型的 mAP50 分别为 0.837 和 0.723,表明这两个类别的检测相对其他类别稍弱。
速度:
(1)预处理(preprocess):0.2毫秒
(2)推理(inference):0.3毫秒
(3)后处理(postprocess):0.9毫秒
结果保存:
(1)Results saved to runs\detect\train_v8:验证结果保存在 runs\detect\train_v8 目录下。
完成信息:
(1)Process finished with exit code 0:表示整个验证过程顺利完成,没有报错。
该图展示了YOLOv8模型在不同情感类别上的检测效果较为均衡,尤其是在“快乐”和“惊讶”类别上表现突出,而在“平和”类别上的表现略差一些。整体的平均精度指标(mAP50和mAP50-95)显示了模型的稳定性能。
相关文章:
基于YOLOv8深度学习的独居老人情感状态监护系统(PyQt5界面+数据集+训练代码)
本研究提出了一种创新的独居老人情感状态监护系统,基于YOLOV8深度学习模型,旨在通过对老年人面部表情的实时监测与分析,来精准识别其情感变化,从而提高独居老人的生活质量,确保其心理健康。本系统通过整合先进的YOLOV8…...
Qt添加外部库:静态库和动态库,批量添加头文件
Qt添加外部库需要知道库文件的位置才能正确链接,如果是静态库,要确保LIBS变量中包含正确的库文件路径和库文件名;如果是动态库,除了库路径外,还需要考虑动态库的加载路径。在 Windows 下,可以将动态库所在路径添加到系…...
Unity类银河战士恶魔城学习总结(P132 Merge skill tree with skill Manager 把技能树和冲刺技能相组合)
【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili 教程源地址:https://www.udemy.com/course/2d-rpg-alexdev/ 本章节实现了解锁技能后才可以使用技能,先完成了冲刺技能的锁定解锁 Dash_Skill.cs using System.Collections; using System…...
Docker入门之Windows安装Docker初体验
在之前我们认识了docker的容器,了解了docker的相关概念:镜像,容器,仓库:面试官让你介绍一下docker,别再说不知道了 之后又带大家动手体验了一下docker从零开始玩转 Docker:一站式入门指南&#…...
DNS实验作业
实验要求 1.搭建dns服务器能够对自定义的正向或者反向域完成数据解析查询。 2.配置从DNS服务器,对主dns服务器进行数据备份。 实验步骤: 1.关闭防护墙 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2.正向解析 [rootlo…...
CSS回顾-CSS选择器详解
一、引言 我来填坑啦!之前在CSS基础知识详解中介绍过,CSS 是一门基于规则的语言。是由选择器与样式信息组成:选择器 {样式信息}。CSS 选择器是 CSS 规则的关键,能精准定位 HTML 元素,CSS3 新增选择器更是增强了设计能…...
FFMPEG录像推流时遇到的问题
FFMPEG录像推流时遇到的问题,记录一下供大参考 1. ret avformat_write_header( ofmt_ctx, NULL ); 执行写入头后,所有的流的时间基都会被内部重新设置,所以并不你想象的把原来的时间直接入到avPACKET中就可以发送了。必须要把你每个流的P…...
【STM32+K210项目】基于K210智能人脸识别+车牌识别系统(完整工程资料源码)
运行效果: 基于K210的智能人脸与车牌识别系统工程 目录: 运行效果: 目录: 前言: 一、国内外研究现状与发展趋势 二、相关技术基础 2.1 人脸识别技术 2.2 车牌识别技术 三、智能小区门禁系统设计 3.1 系统设计方案 3.2 系统设计目标 3.3 智能小区门禁系统硬件设计 3.3.1 控…...
Unity脚本基础规则
Unity脚本基础规则 如何在Unity中创建一个脚本文件? 在Project窗口中的Assets目录下,选择合适的文件夹,右键,选择第一个Create,在新出现的一栏中选择C# Script,此时文件夹内会出现C#脚本图标,…...
基于AIRTEST和Jmeter、Postman的自动化测试框架
基于目前项目和团队技术升级,采用了UI自动化和接口自动化联动数据,进行相关测试活动,获得更好的测试质量和测试结果。...
使用 Azure OpenAI 服务对数据进行联合 SharePoint 搜索
作者:来自 Elastic Gustavo Llermaly 使用 Azure OpenAI 服务处理你的数据,并使用 Elastic 作为向量数据库。 在本文中,我们将探索 Azure OpenAI 服务 “On Your Data”,使用 Elasticsearch 作为数据源。我们将使用 Elastic Shar…...
JavaScript学习笔记 1】初识JS
目录 一、JS是什么? 二、JS的作用? 三、JS的组成 四、JS的书写位置 1. 内部JS 2. 外部JS(外部导入) 3. 内联JS 4. 练习 五、JS的注释与结束符 1. 注释 2. 结束符 3. JS该不该加分号? 六、JS的输入和输出语法 1. 输出语法 a. 输出在页面中 b. …...
Linux-Samba
文章目录 Samba配置服务配置 🏡作者主页:点击! 🤖Linux专栏:点击! ⏰️创作时间:2024年11月18日13点20分 Samba配置 Samba是一个能让 Linux 系统应用与 Microsoft 网络通讯协议的软件&#x…...
【Java Web】JSON 以及 JSON 转换
JSON(JavaScript Object Notation)一种灵活、高效、轻量级的数据交换格式,广泛应用于各种数据交换和存储场景。 基本特点 1、简单易用:JSON格式非常简单,易于理解和使用。 2、轻量级:相比XML等其他数据格…...
Qt 元对象系统
Qt 元对象系统 Qt 元对象系统1. 元对象的概念2. 元对象系统的核心组件2.1 QObject2.2 Q_OBJECT 宏2.3 Meta-Object Compiler (MOC) 3. 信号与槽3.1 基本概念信号与槽的本质信号和槽的关键特征 3.2 绑定信号与槽参数解析断开连接 3.3 标准信号与槽查找标准信号与槽使用示例规则与…...
鸿蒙实战:使用隐式Want启动Ability
文章目录 1. 实战概述2. 实现步骤2.1 创建鸿蒙应用项目2.2 修改Index.ets代码2.3 创建LuzhouAbility2.4 创建Luzhou页面2.5 设置模块配置文件 3. 测试效果4. 实战总结 1. 实战概述 本次鸿蒙应用实战,先创建项目“ImplicitWantStartAbility”,接着修改In…...
go-zero(二) api语法和goctl应用
go-zero api语法和goctl应用 在实际开发中,我们更倾向于使用 goctl 来快速生成代码。 goctl 可以根据 api快速生成代码模板,包括模型、逻辑、处理器、路由等,大幅提高开发效率。 一、构建api demo 现在我们通过 goctl 创建一个最小化的 HT…...
java 操作Mongodb
CRUD基础操作 Springboot 操作 MongoDB 有两种方式。 第一种方式是采用 Springboot 官方推荐的 JPA 方式,这种操作方式,使用简单但是灵活性比较差。第二种方式是采用 Spring Data MongoDB 封装的 MongoDB 官方 Java 驱动 MongoTemplate 对 MongoDB 进行…...
以Java为例,实现一个简单的命令行图书管理系统,包括添加图书、删除图书、查找图书等功能。
江河湖海中的代码之旅:打造你的命令行图书管理系统 一、系统简介 1. Java简介 Java,这个编程语言界的“瑞士军刀”,自1995年诞生以来就以其跨平台的特性和强大的生态系统征服了无数开发者的心。想象一下,Java就像是一条蜿蜒曲折…...
[JavaWeb]微头条项目
完整笔记和项目代码: https://pan.baidu.com/s/1PZBO0mfpwDPic4Ezsk8orA?pwdwwp5 提取码: wwp5 JavaWeb-微头条项目开发 1 项目简介 1.1 业务介绍 微头条新闻发布和浏览平台,主要包含业务如下 用户功能 注册功能登录功能 头条新闻 新闻的分页浏览通过标题关键字搜…...
Linux(CentOS)安装达梦数据库 dm8
CentOS版本:CentOS 7,查看操作系统版本信息,请查阅 查看Linux内核版本信息 达梦数据库版本:dm8 一、获取 dm8 安装文件 1、下载安装文件 打开达梦官网:https://www.dameng.com/ 下载的文件 解压后的文件 2、上传安…...
【专题】中国企业出海洞察报告暨解码全球制胜之道报告汇总PDF洞察(附原数据表)
原文链接:https://tecdat.cn/?p38314 在当今全球化的浪潮中,中国企业的出海行动正以前所未有的规模和速度展开,成为全球经济舞台上的重要力量。本报告旨在对 2024 年中国企业出海情况进行深度洞察,涵盖多个领域和视角。 从对外投…...
[ 跨域问题 ] 前后端以及服务端 解决跨域的各种方法
这篇文章主要介绍了跨域问题,包括其定义、产生原因及各种解决方法。原因是浏览器安全策略限制,方法有 JSONP、CORS、Domain、 postMessage、Nginx配置、.NetCore配置。 前言 什么是跨域问题? 在Web应用中,当一个网页的脚本试图去请求另一个域…...
网络安全之信息收集-实战-2
请注意,本文仅供合法和授权的渗透测试使用,任何未经授权的活动都是违法的。 目录 7、网络空间引擎搜索 8、github源码泄露 9、端口信息 10、框架指纹识别 11、WAF识别 12、后台查找 7、网络空间引擎搜索 FOFA:https://fofa.info/ 360 …...
利用飞书多维表格自动发布版本
文章目录 背景尝试1,轮询尝试2,长连接 背景 博主所在的部门比较奇特,每个车型每周都需要发版,所以实际上一周会发布好几个版本。经过之前使用流水线自动发版改造之后,发版的成本已经大大降低了,具体参考&a…...
深入内核讲明白Android Binder【一】
深入内核讲明白Android Binder【一】 前言一、Android Binder应用编写概述二、基于C语言编写Android Binder跨进程通信Demo0. Demo简介1. 服务的管理者server_manager.c2. Binder服务端代码实现 test_service.c2.1 实现思路2.2 完整实现代码 3. Binder客户端代码实现 test_clie…...
Photoshop(PS)——人像磨皮
1.新建一个文件,背景为白色,将图片素材放入文件中 2.利用CtrlJ 复制两个图层出来,选择第一个拷贝图层,选择滤镜---杂色---蒙尘与划痕 3.调整一下数值,大概能够模糊痘印痘坑,点击确定。 4.然后选择拷贝2图层…...
如何用Excel批量提取文件夹内所有文件名?两种简单方法推荐
在日常办公中,我们有时需要将文件夹中的所有文件名整理在Excel表格中,方便管理和查阅。手动复制文件名既费时又易出错,因此本文将介绍两种利用Excel自动提取文件夹中所有文件名的方法,帮助你快速整理文件信息。 方法一࿱…...
YOLOv8改进,YOLOv8通过RFAConv卷积创新空间注意力和标准卷积,包括RFCAConv, RFCBAMConv,二次创新C2f结构,助力涨点
摘要 空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制—…...
【实验11】卷积神经网络(2)-基于LeNet实现手写体数字识别
👉🏼目录👈🏼 🍒1. 数据 1.1 准备数据 1.2 数据预处理 🍒2. 模型构建 2.1 模型测试 2.2 测试网络运算速度 2.3 输出模型参数量 2.4 输出模型计算量 🍒3. 模型训练 🍒4.模…...
做catia数据的网站/百度学术论文查重官网
一、canvas介绍 <canvas> 标签用于绘制图像(通过脚本,通常是 JavaScript),<canvas> 元素本身并没有绘制能力(它仅仅是图形的容器) - 必须使用脚本来完成实际的绘图任务。 不支持canvas的浏览器:ie8及以下 绘制环境:getcontext…...
林州网站建设/免费建站系统哪个好用吗
NSArray的一些用法 NSArray只允许装OC对象,并且不能装空值,空代表数组元素的结束 #pragma mark - NSArray的基本用法 // 创建一个空数组 NSArray *array [NSArray array]; // 创建有一个元素的数组 array [NSArray arrayWithObject:"123"]; …...
做论坛网站的应用/外贸网站制作公司哪家好
ZLMediakit之base64 在国内的开源媒体框架中,ZLMediakit做的是非常 非常 非常不错的了。(作者也是一个非常值得尊敬的高手)是非常值得学习的,这里对ZML的代码做一个深度解析(自己认为的!!&…...
busy bee wordpress/口碑营销案例ppt
Spring中autowired主要用于装配树形值,其关键类为BeanWrapperImpl,阅读代码发现其关键方法setPropertyValue有如下一段代码。 1 PropertyHandler ph getLocalPropertyHandler(actualName);2 if (ph null || !ph.isWritable()) {3 if …...
网站开发成功案例/互联网公司排名100强
介绍方法之前,我们先说说Python的解释器,由于Python是动态编译的语言,和C/C、Java或者Kotlin等静态语言不同,它是在运行时一句一句代码地边编译边执行的,而Java是提前将高级语言编译成了JVM字节码,运行时直…...
江苏嘉隆工程建设有限公司网站/商城全网推广运营公司
开始学javascript,写作业。 <script type"text/javascript"> function toChinese(money){var chNum[零,壹,贰,叁,肆,伍,陆,柒,捌,玖];var maxnum999999999999.99;var chstr , //返回的大写字符串moneyintparseInt(money),//整数位moneydec money.t…...