【机器学习】机器学习中用到的高等数学知识-7.信息论 (Information Theory)
- 熵 (Entropy):用于评估信息的随机性,常用于决策树和聚类算法。
- 交叉熵 (Cross-Entropy):用于衡量两个概率分布之间的差异,在分类问题中常用。
信息论作为处理信息量和信息传输的数学理论,在机器学习中具有广泛的应用。本文将围绕熵(Entropy)和交叉熵(Cross-Entropy),探讨它们的定义、公式推导、应用场景及代码实现。
1. 熵 (Entropy)
1.1 定义
熵衡量信息的不确定性或随机性。它可以理解为“信息的平均量”,即某一分布下每个事件的信息量的期望值。
1.2 数学公式
对于一个离散随机变量 X,取值为 ,其熵定义为:
其中:
是事件
的概率;
- log 通常以 2 为底(信息量以比特为单位)或以 e 为底(信息量以 nat 为单位)。
1.3 推导过程
熵的来源可以从信息量(Information Content)定义出发:
熵是信息量的加权平均值,因而有:
1.4 应用场景
- 决策树算法:选择分裂点时使用熵减少量(信息增益)。
- 聚类算法:评估聚类后类别分布的随机性。
- 语言模型:评估文本序列的不确定性。
1.5 熵的Python代码实现
import numpy as np# 定义熵函数
def entropy(p):return -np.sum(p * np.log2(p))# 示例概率分布
p = np.array([0.5, 0.25, 0.25])
print("熵:", entropy(p))
熵: 1.5
1.6 图示
熵的图示展示了单一事件概率分布变化时的熵值变化。
import matplotlib.pyplot as plt
import numpy as npp = np.linspace(0.01, 0.99, 100)
entropy_values = -p * np.log2(p) - (1 - p) * np.log2(1 - p)plt.plot(p, entropy_values, label='Entropy')
plt.xlabel('P(x)')
plt.ylabel('H(X)')
plt.title('Entropy vs Probability')
plt.legend()
plt.grid()
plt.show()

2. 交叉熵 (Cross-Entropy)
2.1 定义
交叉熵用于衡量两个概率分布之间的差异。给定真实分布 P 和预测分布 Q,其定义为:
当 P 和 Q 相等时,交叉熵退化为熵。
2.2 推导过程
交叉熵的来源是 Kullback-Leibler (KL) 散度:
其中:
说明交叉熵包含了真实分布的熵和两分布之间的 KL 散度。
2.3 应用场景
- 分类问题:在机器学习中作为目标函数,尤其是多分类问题中的 Softmax 回归。
- 语言模型:衡量生成模型输出的分布与目标分布的匹配度。
- 聚类算法:评估聚类后的分布与目标分布的差异。
2.4 交叉熵的Python代码实现
import numpy as np# 定义交叉熵函数
def cross_entropy(p, q):return -np.sum(p * np.log2(q))# 示例真实分布和预测分布
p = np.array([1, 0, 0]) # 实际类别
q = np.array([0.7, 0.2, 0.1]) # 预测分布
print("交叉熵:", cross_entropy(p, q))
交叉熵: 0.5145731728297583
2.5 图示
交叉熵的图示对比了真实分布和不同预测分布间的差异。
import matplotlib.pyplot as plt
import numpy as npdef cross_entropy(p, q):return -np.sum(p * np.log2(q))p = np.array([1, 0, 0])
q_values = [np.array([0.7, 0.2, 0.1]), np.array([0.4, 0.4, 0.2])]ce_values = [cross_entropy(p, q) for q in q_values]
labels = ['Q1 (Closer)', 'Q2 (Further)']plt.bar(labels, ce_values, color=['blue', 'orange'])
plt.title('Cross-Entropy Comparison')
plt.ylabel('Cross-Entropy')
plt.show()

3. 实际案例:分类问题中的交叉熵
在图像分类中,交叉熵是常用的损失函数。对于一个三类分类问题:
- 真实类别为 [1, 0, 0]。
- 模型预测的概率分布为 [0.7, 0.2, 0.1]。
交叉熵计算结果为 0.514,比完全随机预测([1/3, 1/3, 1/3])的交叉熵小,表明模型预测效果更好。
总结
熵和交叉熵是信息论中的核心概念,其在机器学习中的重要性不可忽视。通过公式理解、代码实现和图示分析,我们可以更好地掌握这些工具,并有效地将其应用于实际问题中。
拓展阅读
【机器学习】数学知识:对数-CSDN博客
【机器学习】机器学习中用到的高等数学知识-2.概率论与统计 (Probability and Statistics)_机器学习概率-CSDN博客
相关文章:
【机器学习】机器学习中用到的高等数学知识-7.信息论 (Information Theory)
熵 (Entropy):用于评估信息的随机性,常用于决策树和聚类算法。交叉熵 (Cross-Entropy):用于衡量两个概率分布之间的差异,在分类问题中常用。 信息论作为处理信息量和信息传输的数学理论,在机器学习中具有广泛的应用。…...
《现代制造技术与装备》是什么级别的期刊?是正规期刊吗?能评职称吗?
问题解答 问:《现代制造技术与装备》是不是核心期刊? 答:不是,是知网收录的第二批认定学术期刊。 问:《现代制造技术与装备》级别? 答:省级。主管单位:齐鲁工业大学࿰…...
09 - Clickhouse的SQL操作
目录 1、Insert 1.1、标准 1.2、从表到表的插入 2、Update和Delete 2.1、删除操作 2.2、修改操作 3、查询操作 3.1、with rollup:从右至左去掉维度进行小计 3.2、with cube : 从右至左去掉维度进行小计,再从左至右去掉维度进行小计 3.3、with …...
如何解决pdf.js跨域从url动态加载pdf文档
摘要 当我们想用PDF.js从URL加载文档时,将会因遇到跨域问题而中断,且是因为会触发了PDF.js和浏览器的双重CORS block,这篇文章将会介绍:①如何禁用pdf.js的跨域?②如何绕过浏览器的CORS加载URL文件?②如何使…...
深入理解TTY体系:设备节点与驱动程序框架详解
往期内容 本专栏往期内容:Uart子系统 UART串口硬件介绍 interrupt子系统专栏: 专栏地址:interrupt子系统Linux 链式与层级中断控制器讲解:原理与驱动开发 – 末片,有专栏内容观看顺序 pinctrl和gpio子系统专栏…...
库的操作(MySQL)
1.创建数据库 语法: CREATE DATABASE [IF NOT EXISTS] db_name [create_specification [, create_specification] ...] create_specification:[DEFAULT] CHARACTER SET charset_name[DEFAULT] COLLATE collation_name说明: 大写的表示关键字 [ ] 是可…...
在 for 循环中,JVM可能会将 arr.length 提升到循环外部,仅计算一次。可能会将如何解释 详解
在 Java 的 for 循环中,JVM 有能力进行优化,将 arr.length 的访问提升到循环外部,避免每次迭代都重新计算 arr.length。这种优化主要是由于 JVM 的 即时编译器(JIT) 和 逃逸分析(Escape Analysis࿰…...
回溯--数据在内存中的存储:整数、大小端和浮点数的深度解析
目录 引言 1. 整数在内存中的存储 1.1 原码、反码和补码 1.2 为什么使用补码? 1.3 示例代码:整数的存储 2. 大小端字节序和字节序判断 2.1 什么是大端和小端? 2.2 为什么会有大端和小端之分? 2.3 字节序的判断小程序 2.…...
第二十二章 Spring之假如让你来写AOP——Target Object(目标对象)篇
Spring源码阅读目录 第一部分——IOC篇 第一章 Spring之最熟悉的陌生人——IOC 第二章 Spring之假如让你来写IOC容器——加载资源篇 第三章 Spring之假如让你来写IOC容器——解析配置文件篇 第四章 Spring之假如让你来写IOC容器——XML配置文件篇 第五章 Spring之假如让你来写…...
探索设计模式:原型模式
设计模式之原型模式 🧐1. 概念🎯2. 原型模式的作用📦3. 实现1. 定义原型接口2. 定义具体的原型类3. 定义客户端4. 结果 📰 4. 应用场景🔍5. 深拷贝和浅拷贝 在面向对象编程中,设计模式是一种通用的解决方案…...
NLP论文速读(EMNLP 2023)|工具增强的思维链推理
论文速读|ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on Chat-based Large Language Models 论文信息: 简介: 本文背景是关于大型语言模型(LLMs)在复杂推理任务中的表现。尽管LLMs在多种评估基准测试中取得了优异的成绩…...
JVM垃圾回收详解.②
空间分配担保 空间分配担保是为了确保在 Minor GC 之前老年代本身还有容纳新生代所有对象的剩余空间。 《深入理解 Java 虚拟机》第三章对于空间分配担保的描述如下: JDK 6 Update 24 之前,在发生 Minor GC 之前,虚拟机必须先检查老年代最大…...
什么是事务,事务有什么特性?
事务的四大特性(ACID) 原子性(Atomicity) 解释:原子性确保事务中的所有操作要么全部完成,要么全部不做。这意味着事务是一个不可分割的工作单元。在数据库中,这通常通过将事务的操作序列作为一个…...
深入解析:如何使用 PyTorch 的 SummaryWriter 进行深度学习训练数据的详细记录与可视化
深入解析:如何使用 PyTorch 的 SummaryWriter 进行深度学习训练数据的详细记录与可视化 为了更全面和详细地解释如何使用 PyTorch 的 SummaryWriter 进行模型训练数据的记录和可视化,我们可以从以下几个方面深入探讨: 初始化 SummaryWriter…...
企业微信中设置回调接口url以及验证 spring boot项目实现
官方文档: 接收消息与事件: 加密解密文档:加解密库下载与返回码 - 文档 - 企业微信开发者中心 下载java样例 加解密库下载与返回码 - 文档 - 企业微信开发者中心 将解压开的代码 ‘将文件夹:qq\weixin\mp\aes的代码作为工具拷…...
电脑超频是什么意思?超频的好处和坏处
嗨,亲爱的小伙伴!你是否曾经听说过电脑超频?在电脑爱好者的圈子里,这个词似乎非常熟悉,但对很多普通用户来说,它可能还是一个神秘而陌生的存在。 今天,我将带你揭开超频的神秘面纱,…...
在 AMD GPU 上构建深度学习推荐模型
Deep Learning Recommendation Models on AMD GPUs — ROCm Blogs 2024 年 6 月 28 日 发布者 Phillip Dang 在这篇博客中,我们将演示如何在支持 ROCm 的 AMD GPU 上使用 PyTorch 构建一个简单的深度学习推荐模型 (DLRM)。 简介 DLRM 位于推荐系统和深度学习的交汇…...
阿里云IIS虚拟主机部署ssl证书
宝塔配置SSL证书用起来是很方便的,只需要在站点里就可以配置好,但是云虚拟主机在管理的时候是没有这个权限的,只提供了简单的域名管理等信息。 此处记录下阿里云(原万网)的IIS虚拟主机如何配置部署SSL证书。 进入虚拟…...
Python运算符列表
运算符 描述 xy,x—y 加、减,“"号可重载为连接符 x*y,x**y,x/y,x%y 相乘、求平方、相除、求余,“*”号可重载为重复,“%"号可重载为格式化 <,<,&…...
MFC图形函数学习09——画多边形函数
这里所说的多边形是指在同一平面中由多条边构成的封闭图形,强调封闭二字,否则无法进行颜色填充,多边形包括凸多边形和凹多边形。 一、绘制多边形函数 原型:BOOL Polygon(LPPOINT lpPoints,int nCount); 参数&#x…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
