当前位置: 首页 > news >正文

【机器学习】机器学习中用到的高等数学知识-7.信息论 (Information Theory)

  • 熵 (Entropy):用于评估信息的随机性,常用于决策树和聚类算法。
  • 交叉熵 (Cross-Entropy):用于衡量两个概率分布之间的差异,在分类问题中常用。

信息论作为处理信息量和信息传输的数学理论,在机器学习中具有广泛的应用。本文将围绕熵(Entropy)和交叉熵(Cross-Entropy),探讨它们的定义、公式推导、应用场景及代码实现。

1. 熵 (Entropy)

1.1 定义

熵衡量信息的不确定性或随机性。它可以理解为“信息的平均量”,即某一分布下每个事件的信息量的期望值。

1.2 数学公式

对于一个离散随机变量 X,取值为 x_1, x_2, \ldots, x_n,其熵定义为:

H(X) = -\sum_{i=1}^{n} P(x_i) \log P(x_i)

其中:

  • P(x_i) 是事件 x_i 的概率;
  • log 通常以 2 为底(信息量以比特为单位)或以 e 为底(信息量以 nat 为单位)。
1.3 推导过程

熵的来源可以从信息量(Information Content)定义出发:

I(x_i) = -\log P(x_i)

熵是信息量的加权平均值,因而有:

H(X) = \mathbb{E}[I(x)] = -\sum_{i=1}^n P(x_i) \log P(x_i)

1.4 应用场景
  1. 决策树算法:选择分裂点时使用熵减少量(信息增益)。
  2. 聚类算法:评估聚类后类别分布的随机性。
  3. 语言模型:评估文本序列的不确定性。
1.5 熵的Python代码实现
import numpy as np# 定义熵函数
def entropy(p):return -np.sum(p * np.log2(p))# 示例概率分布
p = np.array([0.5, 0.25, 0.25])
print("熵:", entropy(p))
熵: 1.5
1.6 图示

熵的图示展示了单一事件概率分布变化时的熵值变化。

import matplotlib.pyplot as plt
import numpy as npp = np.linspace(0.01, 0.99, 100)
entropy_values = -p * np.log2(p) - (1 - p) * np.log2(1 - p)plt.plot(p, entropy_values, label='Entropy')
plt.xlabel('P(x)')
plt.ylabel('H(X)')
plt.title('Entropy vs Probability')
plt.legend()
plt.grid()
plt.show()


2. 交叉熵 (Cross-Entropy)

2.1 定义

交叉熵用于衡量两个概率分布之间的差异。给定真实分布 P 和预测分布 Q,其定义为:

H(P, Q) = -\sum_{i=1}^n P(x_i) \log Q(x_i)

当 P 和 Q 相等时,交叉熵退化为熵。

2.2 推导过程

交叉熵的来源是 Kullback-Leibler (KL) 散度:

D_{KL}(P || Q) = \sum_{i=1}^n P(x_i) \log \frac{P(x_i)}{Q(x_i)}

其中:

H(P, Q) = H(P) + D_{KL}(P || Q)

说明交叉熵包含了真实分布的熵和两分布之间的 KL 散度。

2.3 应用场景
  1. 分类问题:在机器学习中作为目标函数,尤其是多分类问题中的 Softmax 回归。
  2. 语言模型:衡量生成模型输出的分布与目标分布的匹配度。
  3. 聚类算法:评估聚类后的分布与目标分布的差异。
2.4 交叉熵的Python代码实现
import numpy as np# 定义交叉熵函数
def cross_entropy(p, q):return -np.sum(p * np.log2(q))# 示例真实分布和预测分布
p = np.array([1, 0, 0])  # 实际类别
q = np.array([0.7, 0.2, 0.1])  # 预测分布
print("交叉熵:", cross_entropy(p, q))
交叉熵: 0.5145731728297583
2.5 图示

交叉熵的图示对比了真实分布和不同预测分布间的差异。

import matplotlib.pyplot as plt
import numpy as npdef cross_entropy(p, q):return -np.sum(p * np.log2(q))p = np.array([1, 0, 0])
q_values = [np.array([0.7, 0.2, 0.1]), np.array([0.4, 0.4, 0.2])]ce_values = [cross_entropy(p, q) for q in q_values]
labels = ['Q1 (Closer)', 'Q2 (Further)']plt.bar(labels, ce_values, color=['blue', 'orange'])
plt.title('Cross-Entropy Comparison')
plt.ylabel('Cross-Entropy')
plt.show()


3. 实际案例:分类问题中的交叉熵

在图像分类中,交叉熵是常用的损失函数。对于一个三类分类问题:

  • 真实类别为 [1, 0, 0]。
  • 模型预测的概率分布为 [0.7, 0.2, 0.1]。

交叉熵计算结果为 0.514,比完全随机预测([1/3, 1/3, 1/3])的交叉熵小,表明模型预测效果更好。


总结

熵和交叉熵是信息论中的核心概念,其在机器学习中的重要性不可忽视。通过公式理解、代码实现和图示分析,我们可以更好地掌握这些工具,并有效地将其应用于实际问题中。


拓展阅读

【机器学习】数学知识:对数-CSDN博客
【机器学习】机器学习中用到的高等数学知识-2.概率论与统计 (Probability and Statistics)_机器学习概率-CSDN博客

相关文章:

【机器学习】机器学习中用到的高等数学知识-7.信息论 (Information Theory)

熵 (Entropy):用于评估信息的随机性,常用于决策树和聚类算法。交叉熵 (Cross-Entropy):用于衡量两个概率分布之间的差异,在分类问题中常用。 信息论作为处理信息量和信息传输的数学理论,在机器学习中具有广泛的应用。…...

《现代制造技术与装备》是什么级别的期刊?是正规期刊吗?能评职称吗?

​问题解答 问:《现代制造技术与装备》是不是核心期刊? 答:不是,是知网收录的第二批认定学术期刊。 问:《现代制造技术与装备》级别? 答:省级。主管单位:齐鲁工业大学&#xff0…...

09 - Clickhouse的SQL操作

目录 1、Insert 1.1、标准 1.2、从表到表的插入 2、Update和Delete 2.1、删除操作 2.2、修改操作 3、查询操作 3.1、with rollup:从右至左去掉维度进行小计 3.2、with cube : 从右至左去掉维度进行小计,再从左至右去掉维度进行小计 3.3、with …...

如何解决pdf.js跨域从url动态加载pdf文档

摘要 当我们想用PDF.js从URL加载文档时,将会因遇到跨域问题而中断,且是因为会触发了PDF.js和浏览器的双重CORS block,这篇文章将会介绍:①如何禁用pdf.js的跨域?②如何绕过浏览器的CORS加载URL文件?②如何使…...

深入理解TTY体系:设备节点与驱动程序框架详解

往期内容 本专栏往期内容:Uart子系统 UART串口硬件介绍 interrupt子系统专栏: 专栏地址:interrupt子系统Linux 链式与层级中断控制器讲解:原理与驱动开发 – 末片,有专栏内容观看顺序 pinctrl和gpio子系统专栏&#xf…...

库的操作(MySQL)

1.创建数据库 语法: CREATE DATABASE [IF NOT EXISTS] db_name [create_specification [, create_specification] ...] create_specification:[DEFAULT] CHARACTER SET charset_name[DEFAULT] COLLATE collation_name说明: 大写的表示关键字 [ ] 是可…...

在 for 循环中,JVM可能会将 arr.length 提升到循环外部,仅计算一次。可能会将如何解释 详解

在 Java 的 for 循环中,JVM 有能力进行优化,将 arr.length 的访问提升到循环外部,避免每次迭代都重新计算 arr.length。这种优化主要是由于 JVM 的 即时编译器(JIT) 和 逃逸分析(Escape Analysis&#xff0…...

回溯--数据在内存中的存储:整数、大小端和浮点数的深度解析

目录 引言 1. 整数在内存中的存储 1.1 原码、反码和补码 1.2 为什么使用补码? 1.3 示例代码:整数的存储 2. 大小端字节序和字节序判断 2.1 什么是大端和小端? 2.2 为什么会有大端和小端之分? 2.3 字节序的判断小程序 2.…...

第二十二章 Spring之假如让你来写AOP——Target Object(目标对象)篇

Spring源码阅读目录 第一部分——IOC篇 第一章 Spring之最熟悉的陌生人——IOC 第二章 Spring之假如让你来写IOC容器——加载资源篇 第三章 Spring之假如让你来写IOC容器——解析配置文件篇 第四章 Spring之假如让你来写IOC容器——XML配置文件篇 第五章 Spring之假如让你来写…...

探索设计模式:原型模式

设计模式之原型模式 🧐1. 概念🎯2. 原型模式的作用📦3. 实现1. 定义原型接口2. 定义具体的原型类3. 定义客户端4. 结果 📰 4. 应用场景🔍5. 深拷贝和浅拷贝 在面向对象编程中,设计模式是一种通用的解决方案…...

NLP论文速读(EMNLP 2023)|工具增强的思维链推理

论文速读|ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on Chat-based Large Language Models 论文信息: 简介: 本文背景是关于大型语言模型(LLMs)在复杂推理任务中的表现。尽管LLMs在多种评估基准测试中取得了优异的成绩…...

JVM垃圾回收详解.②

空间分配担保 空间分配担保是为了确保在 Minor GC 之前老年代本身还有容纳新生代所有对象的剩余空间。 《深入理解 Java 虚拟机》第三章对于空间分配担保的描述如下: JDK 6 Update 24 之前,在发生 Minor GC 之前,虚拟机必须先检查老年代最大…...

什么是事务,事务有什么特性?

事务的四大特性(ACID) 原子性(Atomicity) 解释:原子性确保事务中的所有操作要么全部完成,要么全部不做。这意味着事务是一个不可分割的工作单元。在数据库中,这通常通过将事务的操作序列作为一个…...

深入解析:如何使用 PyTorch 的 SummaryWriter 进行深度学习训练数据的详细记录与可视化

深入解析:如何使用 PyTorch 的 SummaryWriter 进行深度学习训练数据的详细记录与可视化 为了更全面和详细地解释如何使用 PyTorch 的 SummaryWriter 进行模型训练数据的记录和可视化,我们可以从以下几个方面深入探讨: 初始化 SummaryWriter…...

企业微信中设置回调接口url以及验证 spring boot项目实现

官方文档: 接收消息与事件: 加密解密文档:加解密库下载与返回码 - 文档 - 企业微信开发者中心 下载java样例 加解密库下载与返回码 - 文档 - 企业微信开发者中心 将解压开的代码 ‘将文件夹:qq\weixin\mp\aes的代码作为工具拷…...

电脑超频是什么意思?超频的好处和坏处

嗨,亲爱的小伙伴!你是否曾经听说过电脑超频?在电脑爱好者的圈子里,这个词似乎非常熟悉,但对很多普通用户来说,它可能还是一个神秘而陌生的存在。 今天,我将带你揭开超频的神秘面纱,…...

在 AMD GPU 上构建深度学习推荐模型

Deep Learning Recommendation Models on AMD GPUs — ROCm Blogs 2024 年 6 月 28 日 发布者 Phillip Dang 在这篇博客中,我们将演示如何在支持 ROCm 的 AMD GPU 上使用 PyTorch 构建一个简单的深度学习推荐模型 (DLRM)。 简介 DLRM 位于推荐系统和深度学习的交汇…...

阿里云IIS虚拟主机部署ssl证书

宝塔配置SSL证书用起来是很方便的,只需要在站点里就可以配置好,但是云虚拟主机在管理的时候是没有这个权限的,只提供了简单的域名管理等信息。 此处记录下阿里云(原万网)的IIS虚拟主机如何配置部署SSL证书。 进入虚拟…...

Python运算符列表

运算符 描述 xy&#xff0c;x—y 加、减,“"号可重载为连接符 x*y,x*&#xff0a;y&#xff0c;x/y,x&#xff05;y 相乘、求平方、相除、求余&#xff0c;“*”号可重载为重复&#xff0c;“&#xff05;"号可重载为格式化 <&#xff0c;<&#xff0c;&…...

MFC图形函数学习09——画多边形函数

这里所说的多边形是指在同一平面中由多条边构成的封闭图形&#xff0c;强调封闭二字&#xff0c;否则无法进行颜色填充&#xff0c;多边形包括凸多边形和凹多边形。 一、绘制多边形函数 原型&#xff1a;BOOL Polygon(LPPOINT lpPoints,int nCount); 参数&#x…...

GaussianDreamer: Fast Generation from Text to 3D Gaussians——点云论文阅读(11)

此内容是论文总结&#xff0c;重点看思路&#xff01;&#xff01; 文章概述 本文提出了一种快速从文本生成3D资产的新方法&#xff0c;通过结合3D高斯点表示、3D扩散模型和2D扩散模型的优势&#xff0c;实现了高效生成。该方法利用3D扩散模型生成初始几何&#xff0c;通过噪声…...

k8s篇之控制器类型以及各自的适用场景

1. k8s中控制器介绍 在 Kubernetes 中,控制器(Controller)是集群中用于管理资源的关键组件。 它们的核心作用是确保集群中的资源状态符合用户的期望,并在需要时自动进行调整。 Kubernetes 提供了多种不同类型的控制器,每种控制器都有其独特的功能和应用场景。 2. 常见的…...

Node.js 笔记(一):express路由

代码 建立app.js文件&#xff0c;代码如下&#xff1a; const express require(express) const app express() const port 3002app.get(/,(req,res)>{res.send(hello world!)})app.listen(port,()>{console.log(sever is running on http://localhost:${port}) })问…...

bash笔记

0 $0 是脚本的名称&#xff0c;$# 是传入的参数数量&#xff0c;$1 是第一个参数&#xff0c;$BOOK_ID 是变量BOOK_ID的内容 1 -echo用于在命令窗口输出信息 -$()&#xff1a;是命令替换的语法。$(...) 会执行括号内的命令&#xff0c;并将其输出捕获为一个字符串&#xff…...

mongoDB副本集搭建-docker

MongoDB副本集搭建-docker 注&#xff1a;在进行副本集搭建前&#xff0c;请先将服务部署docker环境并正常运行。 #通过--platform指定下载镜像的系统架构 在这我用的是mongo:4.0.28版本 arm64系统架构的mongo镜像 docker pull --platformlinux/arm64 mongo:4.0.2#查看镜像是…...

Python软体中使用 Flask 或 FastAPI 搭建简单 RESTful API 服务并实现限流功能

Python软体中使用 Flask 或 FastAPI 搭建简单 RESTful API 服务并实现限流功能 引言 在现代 web 开发中,RESTful API 已成为应用程序之间进行通信的标准方式。Python 提供了多种框架来帮助开发者快速搭建 RESTful API 服务,其中 Flask 和 FastAPI 是最受欢迎的两个框架。本…...

CentOS操作系统下安装Nacos

CentOS下安装Nacos 前言 这在Centos下安装配置Nacos 下载Linux版Nacos 首先到Nacos的 Github页面&#xff0c;找到所需要安装的版本 也可以右键复制到链接&#xff0c;然后通过wget命令进行下载 wget https://github.com/alibaba/nacos/releases/download/1.3.2/nacos-ser…...

C++设计模式之适配器模式与桥接模式,装饰器模式及代理模式相似点与不同点

适配器模式、桥接模式、装饰器模式和代理模式在形式上有一些相似之处&#xff0c;因为它们都涉及到对类的功能或接口的修改、增强或转换。然而&#xff0c;它们在动机和目的上有着显著的不同。以下是对这些模式相似点和不同点的清晰说明&#xff1a; 相似点&#xff1a; 结构…...

ThreadLocal 和 Caffeine 缓存是两种不同的缓存机制,它们在用途和实现上有明显的区别

ThreadLocal 和 Caffeine 缓存是两种不同的缓存机制&#xff0c;它们在用途和实现上有明显的区别&#xff1a; ThreadLocal 缓存&#xff1a; ThreadLocal 提供了线程局部变量的功能&#xff0c;每个线程可以访问自己的局部变量&#xff0c;而不会与其他线程冲突。ThreadLocal …...

Django实现智能问答助手-进一步完善

扩展 增加问答数据库&#xff0c;通过 Django Admin 添加问题和答案。实现更复杂的问答逻辑&#xff0c;比如使用自然语言处理&#xff08;NLP&#xff09;库。使用前端框架&#xff08;如 Bootstrap&#xff09;增强用户界面 1.注册模型到 Django Admin&#xff08;admin.py…...

做百度移动端网站优化/张家界百度seo

Tensorflow中,什么是Logits,它和我们常用的Feature有什么不同&#xff1f; 在tensorflow中经常会用到三个函数 tf.nn.softmax_cross_entropy_with_logits(label one_hot_label, logits logits) tf.nn.softmax_cross_entropy(label one_hot_label, logits logits) tf.nn.so…...

wordpress只索引分类/百度的营销推广

继承作为面向对象编程的一种基本特征&#xff0c;其使用频率非常高。而继承包含了虚拟继承和普通继承&#xff0c;在可见性上分为public、protected、private。可见性继承比较简单&#xff0c;而虚拟继承对学习c的难度较大。 首先&#xff0c;虚拟继承与普通继承的区别有&#…...

做网站需要多大空间/网络营销的基本方法

3. KingbaseES的EF6编程指南 本部分描述了KingbaseES 的EF6的环境搭建以及程序开发示例。 环境搭建 程序开发示例 3.1. 环境搭建 工程搭建 服务的配置方法和参数说明 3.1.1. 工程搭建 工程搭建步骤可参考 参考用例一 中的步骤1。 3.1.2. 服务的配置方法和参数说明 相关…...

网页app生成器原理/四川seo快速排名

基本思路&#xff1a;使用SQL SERVER 2014的Reporting Services定位MYSQL用于生产&#xff0c;MS SQL SERVER用于统计分析处理&#xff0c;不占用CPU和IO。与MYSQL的关系采用链接服务器方式&#xff1a; http://www.cnblogs.com/hukn/archive/2011/07/27/SQL_Server_ODBC_LinkS…...

wordpress 页尾修改/优化关键词技巧

Linux文件挂载其实和Windows文件共享原理差不多&#xff0c;由主机配置一个共享目录&#xff0c;客户端机器可以通过网络访问该共享目录。下面以 SUSE 为例子&#xff0c;简要描述下NFS文件挂载过程&#xff1a;一、主机端(主机IP192.168.0.100)1、准备工作&#xff0c;主机需要…...

28网站怎么做代理/企业seo

linklinklink 分析&#xff1a; 勋章都是222的幂次 所以就是问每个数的二进制有多少个111 CODE&#xff1a; #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #define reg register using namespace std; typedef lon…...