当前位置: 首页 > news >正文

Spark RDD sortBy算子什么情况会触发shuffle

在 Spark 的 RDD 中,sortBy 是一个排序算子,虽然它在某些场景下可能看起来是分区内排序,但实际上在需要全局排序时会触发 Shuffle。这里我们分析其底层逻辑,结合源码和原理来解释为什么会有 Shuffle 的发生。


1. 为什么 sortBy 会触发 Shuffle?

关键点 1:全局有序性要求

sortBy 并非单纯的分区内排序。它的目标是按照用户指定的键对整个 RDD 的数据进行排序,这种操作需要保证全局顺序。为实现这一点,必须:

  • 对数据进行 重新分区(Repartition),确保每个分区中的数据按照全局范围内的排序键正确分布;
  • 每个分区内部再完成排序。

这些步骤不可避免地引入了 Shuffle,因为数据需要从一个分区转移到另一个分区以保证全局有序性。


关键点 2:底层调用 repartitionAndSortWithinPartitions

sortBy 的底层实现会调用 repartitionAndSortWithinPartitions 方法:

this.keyBy(f).repartitionAndSortWithinPartitions(new RangePartitioner(numPartitions, this, ascending))(ordInverse).values
  1. keyBy(f)

    • 将数据转化为 (key, value) 格式,key 是排序的关键字,value 是原始数据。
  2. RangePartitioner

    • 使用 RangePartitioner 将数据根据排序键重新分区(这一步需要 Shuffle)。
  3. repartitionAndSortWithinPartitions

    • 先 Shuffle 数据以保证每个分区内的 key 是按范围划分的;
    • 然后对每个分区内的数据进行排序。
Shuffle 的触发
  • 当目标分区数量与当前分区数量不一致时(用户指定分区数或默认分区数),会触发 Shuffle;
  • 即使目标分区数一致,只要需要保证全局有序,也需要重新分布数据来确保各分区内数据按键范围划分。

2. Shuffle 的作用

  • 全局排序:分区间重新分布数据,确保所有分区的排序键范围是连续的。
  • 负载均衡:通过 RangePartitioner 分布数据,避免某些分区过大或过小的问题。
  • 分区内排序:确保每个分区内部数据按键排序。

3. 源码分析

repartitionAndSortWithinPartitions 的核心逻辑如下:

def repartitionAndSortWithinPartitions(partitioner: Partitioner)(implicit ord: Ordering[K]): RDD[(K, V)] = withScope {val shuffled = new ShuffledRDD[K, V, V](this, partitioner)shuffled.setKeyOrdering(ord)new MapPartitionsRDD(shuffled, (context, pid, iter) => {val sorter = new ExternalSorter[K, V, V](context, Some(partitioner), Some(ord))sorter.insertAll(iter)context.taskMetrics().incMemoryBytesSpilled(sorter.memoryBytesSpilled)context.taskMetrics().incDiskBytesSpilled(sorter.diskBytesSpilled)context.taskMetrics().incPeakExecutionMemory(sorter.peakMemoryUsedBytes)sorter.iterator})
}
  1. ShuffledRDD

    • 触发 Shuffle,将数据根据分区器重新分布。
  2. ExternalSorter

    • 对每个分区内的数据进行排序(如果数据超出内存,会使用磁盘作为临时存储)。

4. 举例说明 Shuffle 的发生

sortBy 的行为取决于传递的参数。为了实现分区内排序,你需要明确控制 sortBy 的参数设置。如果不显式指定目标分区数(numPartitions 参数),sortBy 默认不会触发 Shuffle,因此只会在分区内排序。

例子 1:带 Shuffle 的全局排序
val rdd = sc.parallelize(Seq(5, 2, 4, 3, 1), numSlices = 2)
val sortedRdd = rdd.sortBy(x => x, ascending = true, numPartitions = 3)// 指定目标分区数
println(sortedRdd.collect().mkString(", "))
  • 初始数据分区
    分区 1:[5, 2],分区 2:[4, 3, 1]
  • 重新分区和排序后
    分区 1:[1, 2],分区 2:[3, 4],分区 3:[5]
  • Shuffle 触发原因
    数据必须重新分布,确保分区键范围([1-2], [3-4], [5])。
  • 特点
    触发 Shuffle 操作,数据按照 RangePartitioner 进行分区。
    每个分区内局部排序后,实现全局排序。
例子 2:分区内排序(无 Shuffle)
val rdd = sc.parallelize(Seq(5, 2, 4, 3, 1), numSlices = 2) // 两个分区
// 如果只需要分区内排序,mapPartitions 提供了无 Shuffle 的选择。
val sorted = rdd.mapPartitions(partition => partition.toList.sorted.iterator)
sorted.collect().foreach(println)
  • 初始数据分区
    分区 1:[5, 2],分区 2:[4, 3, 1]
  • 排序后
    分区 1:[2, 5],分区 2:[1, 3, 4]
  • 无 Shuffle 原因
    数据仅在分区内排序,分区间顺序无全局保证。

5. 总结

  • sortBy 在需要全局排序时触发 Shuffle,这是为了重新分区以确保分区范围和分区内排序。
  • 如果只需要分区内排序,mapPartitions 提供了无 Shuffle 的选择。

注意事项

  • 全局排序带来的 Shuffle 会显著增加网络传输和计算成本。
  • 如无必要,尽量避免全局排序,优先考虑局部排序或 Top-N 算法以优化性能。

相关文章:

Spark RDD sortBy算子什么情况会触发shuffle

在 Spark 的 RDD 中,sortBy 是一个排序算子,虽然它在某些场景下可能看起来是分区内排序,但实际上在需要全局排序时会触发 Shuffle。这里我们分析其底层逻辑,结合源码和原理来解释为什么会有 Shuffle 的发生。 1. 为什么 sortBy 会…...

机器视觉相机重要名词

机器视觉相机的重要名词包括: • 工业数字相机:又称工业相机,是机器视觉系统中的关键组件。 • 电荷偶合元件(CCD):一种图像传感器,能将光学影像转换为数字信号。 • 互补金属氧化物半导体&…...

Django:从入门到精通

一、Django背景 Django是一个由Python编写的高级Web应用框架,以其简洁性、安全性和高效性而闻名。Django最初由Adrian Holovaty和Simon Willison于2003年开发,旨在简化Web应用的开发过程。作为一个开放源代码项目,Django迅速吸引了大量的开发…...

android viewpager2 嵌套 recyclerview 手势冲突

老规矩直接上代码, 不分析: import android.content.Context import android.util.AttributeSet import android.view.MotionEvent import android.view.View import android.view.ViewConfiguration import android.view.ViewGroup import android.widg…...

依赖管理(go mod)

目录 各版本依赖管理的时间分布 一、GOPATH 1. GOROOT是什么 定义: 作用: 默认值: 是否需要手动设置: 查看当前的 GOROOT: 2. GOPATH:工作区目录 定义: 作用&#xff1a…...

Apple Vision Pro开发001-开发配置

一、Vision Pro开发硬件和软件要求 硬件要求软件要求 1、Apple Silicon Mac(M系列芯片的Mac电脑) 2、Apple vision pro-真机调试 XCode15.2及以上,调试开发和打包发布Unity开发者账号&&苹果开发者账号 二 、开启无线调试 1、Apple Vision Pro和Mac连接同…...

android 动画原理分析

一 android 动画分为app内的view动画和系统动画 基本原理都是监听Choreographer的doframe回调 二 app端的实现是主要通过AnimationUtils来实现具体属性的变化通过invilate来驱动 wms来进行更新。这个流程是在app进程完成 这里不是我分析的重点 直接来看下系统动画里面的本地动…...

Elasticsearch 6.8 分析器

在 Elasticsearch 中,分析器(Analyzer)是文本分析过程中的一个关键组件,它负责将原始文本转换为一组词汇单元(tokens)。 分析器由三个主要部分组成:分词器(Tokenizer)、…...

实验室资源调度系统:基于Spring Boot的创新

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常…...

实验三:构建园区网(静态路由)

目录 一、实验简介 二、实验目的 三、实验需求 四、实验拓扑 五、实验任务及要求 1、任务 1:完成网络部署 2、任务 2:设计全网 IP 地址 3、任务 3:实现全网各主机之间的互访 六、实验步骤 1、在 eNSP 中部署网络 2、配置各主机 IP …...

3. SQL优化

SQL性能优化 在日常开发中,MySQL性能优化是一项必不可少的技能。本文以具体案例为主线,结合实际问题,探讨如何优化插入、排序、分组、分页、计数和更新等操作,帮助你实现数据库性能的飞跃。 一、索引设计原则 索引是MySQL优化的…...

web——upload-labs——第十一关——黑名单验证,双写绕过

还是查看源码, $file_name str_ireplace($deny_ext,"", $file_name); 该语句的作用是:从 $file_name 中去除所有出现在 $deny_ext 数组中的元素,替换为空字符串(即删除这些元素)。str_ireplace() 在处理时…...

AWS CLI

一、AWS CLI介绍 1、简介 AWS CLI(Amazon Web Services Command Line Interface)是一个命令行工具,它允许用户通过命令行与 Amazon Web Services(AWS)的各种云服务进行交互和管理。使用 AWS CLI,用户可以直接在终端或命令行界面中执行命令来配置、管理和自动化AWS资源,…...

springboot:责任链模式实现多级校验

责任链模式是将链中的每一个节点看作是一个对象,每个节点处理的请求不同,且内部自动维护一个下一节点对象。 当一个请求从链式的首段发出时,会沿着链的路径依此传递给每一个节点对象,直至有对象处理这个请求为止。 属于行为型模式…...

CentO7安装单节点Redis服务

本文目录 一、Redis安装与配置1.1 安装redis依赖1.2 上传压缩包并解压1.3 编译安装1.4 修改配置并启动1、复制配置文件2、修改配置文件3、启动Redis服务4、停止redis服务 1.5 redis连接使用1、 命令行客户端2、 图形界面客户端 一、Redis安装与配置 1.1 安装redis依赖 Redis是…...

FreeRTOS学习14——时间管理

时间管理 时间管理FreeRTOS 系统时钟节拍FreeRTOS 系统时钟节拍简介FreeRTOS 系统时钟节拍处理FreeRTOS 系统时钟节拍来源 FreeRTOS 任务延时函数vTaskDelay()vTaskDelayUntil() 时间管理 在前面的章节实验例程中,频繁地使用了 FreeRTOS 提供的延时函数&#xff0c…...

统⼀数据返回格式快速⼊⻔

为什么会有统⼀数据返回? 其实统一数据返回是运用了AOP(对某一类事情的集中处理)的思维。 优点: 1.⽅便前端程序员更好的接收和解析后端数据接⼝返回的数据。 2.降低前端程序员和后端程序员的沟通成本,因为所有接⼝都…...

Python学习------第十天

数据容器-----元组 定义格式,特点,相关操作 元组一旦定义,就无法修改 元组内只有一个数据,后面必须加逗号 """ #元组 (1,"hello",True) #定义元组 t1 (1,"hello") t2 () t3 tuple() prin…...

Win11 24H2新BUG或影响30%CPU性能,修复方法在这里

原文转载修改自(更多互联网新闻/搞机小知识): 一招提升Win11 24H2 CPU 30%性能,小BUG大影响 就在刚刚,小江在网上冲浪的时候突然发现了这么一则帖子,标题如下:基准测试(特别是 Time…...

element ui 走马灯一页展示多个数据实现

element ui 走马灯一页展示多个数据实现 element ui 走马灯一页展示多个数据实现 element ui 走马灯一页展示多个数据实现 主要是对走马灯的数据的操作,先看js处理 let list [{ i: 1, name: 1 },{ i: 2, name: 2 },{ i: 3, name: 3 },{ i: 4, name: 4 },]let newL…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

深度解析:etcd 在 Milvus 向量数据库中的关键作用

目录 &#x1f680; 深度解析&#xff1a;etcd 在 Milvus 向量数据库中的关键作用 &#x1f4a1; 什么是 etcd&#xff1f; &#x1f9e0; Milvus 架构简介 &#x1f4e6; etcd 在 Milvus 中的核心作用 &#x1f527; 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...