【AIGC】如何准确引导ChatGPT,实现精细化GPTs指令生成
文章目录
- 💯前言
- 💯准确引导ChatGPT创建爆款小红书文案GPTs指令案例
- 💯 高效开发GPTs应用的核心原则
- 明确应用场景和目标受众
- 构建多样化风格模板
- 提问与引导技巧
- 持续优化与输出验证
- 💯 构建自定义GPTs的未来发展
- 模块化构建与组合
- 可视化流程编辑
- 自动化优化与迭代
- 多领域融合与跨场景应用
- 💯小结
- 关于
GPTs指令
如何在ChatGPT上使用,看这篇文章:
【AIGC】如何在ChatGPT中制作个性化GPTs应用详解 https://blog.csdn.net/2201_75539691?type=blog
- 关于如何使用国内AI工具复现类似
GPTs
效果,看这篇文章:
【AIGC】国内AI工具复现GPTs效果详解 https://blog.csdn.net/2201_75539691?type=blog
💯前言
- 在人工智能技术飞速发展的今天,如何通过有效的引导和指令,精准开发定制化的GPTs应用,成为了探索AI应用场景中的重要一环。GPTs不仅是一种强大的生产力工具,更是赋能个人品牌、企业创新以及多样化需求解决方案的关键。通过精细化的设计与引导,我们可以将ChatGPT训练成在特定场景中具备专业能力的智能助手,从而在内容创作、知识管理和用户交互中大放异彩。
在本文中,我们以一个实际案例——准确引导ChatGPT创建爆款小红书文案GPTs指令
为例,展示如何通过逐步引导ChatGPT,完成从能力提炼、逻辑结构设计到指令封装的全过程。这不仅能帮助你掌握精细化GPTs开发的技巧,还能为你在实际应用中提供灵感与借鉴。
GPTs FAQ
Introducing the GPT Store
💯准确引导ChatGPT创建爆款小红书文案GPTs指令案例
-
在内容开头询问ChatGPT是否了解"小红书",通过这个简单的问题来引入主题。
你知道小红书是什么吗?
-
提出如果要将ChatGPT训练成小红书写作专家需要哪些步骤,这一步明确了后续需要分步讲解的内容,目的是让
过程更有条理
。如果我要把你训练成为一个专业的小红书写作专家,请问需要哪些步骤?
-
进一步引导ChatGPT分析一篇优质的小红书笔记应该具备的品质,让它能够理解
爆款笔记的成功因素
,为创作做好准备。一篇优秀的小红书笔记作品通常会具备哪些品质和特点,怎么样才能让用户受众有被种草的感觉呢?
-
了解小红书用户的特点,并明确撰写笔记时需要迎合这些受众的需求,这是确保
内容成功的重要基础
。小红书上面的主要用户有哪些特点?如果我们要写出一篇受小红书用户喜欢的爆款笔记内容,需要 满足哪些要求?
-
通过询问优秀的小红书笔记模板是什么样的,让ChatGPT了解如何有效组织内容,这一步骤是为了提供
写作时可参考的结构化框架
。你知道小红书笔记的优秀模板是什么样的吗?
-
在这一步,我要求ChatGPT牢记前面所学的知识和策略,确认它已能将这些应用于
实际创作中
,作为写作的基础保证。现在,我请你记住以上的信息,然后扮演一位小红书写作专家,你对以上内容烂熟于心,并会在写 作小红书爆款笔记时,认真的执行它们。如果你确认,并且能做到,请向我回复“是”,并邀请我向 你提供信息,供你创作小红书爆款笔记。
-
引导ChatGPT思考需要哪些内容来撰写一篇高质量的笔记,这样可以让我更好地准备
所需的素材和方向
,确保最终输出符合我的期望。如果你现在要为我创作一篇小红书爆款笔记,你认为,我需要向你提供哪些信息和内容供你参考?
- 提供一个具体的笔记主题"关于AIGC工具内容分享",并让ChatGPT开始创作,这一步的目的是进行实战模拟,让它把
前面学到的知识付诸实践
。我的笔记主题是关于AIGC工具内容分享,其他的信息由你自己来拟定。请为我撰写爆款笔记。
-
要求它模拟特定身份(经验丰富的程序员),并使用轻松幽默的语气,同时结合Emoji符号。这一步的目的在于赋予笔记
独特的个性
,使其更符合小红书的用户喜好。我的笔记主题是关于AIGC工具内容分享,请模拟一个职场经验丰富的程序员且带点幽默的语气,笔记内容要非常擅长使用emoji符 号。请为我撰写爆款笔记,并在结尾带上#标签。
-
提供个人品牌背景信息并请求撰写注意事项,旨在明确
品牌定位
,通过这一具体背景来训练ChatGPT考虑品牌因素对内容创作的影响。假如现在我是一名知识分享博主,我希望通过小红书,让更多人知道我的个人品牌,我的个人品牌名字叫zoezoe。zoezoe是一个线上线下相结合的平台,线上是一个在线学习平台,可以在线使用各种AIGC工具,里面还有各式各样的AIGC课程可供购买;线下主要是进行AIGC相关的培训课程。请问,我在写小红书的笔记时,需要注意什么。我所在的城市是北京,之前我个人品牌教育培训面向的用户,主要是18-35岁的职场人士。
-
要求ChatGPT在我输入“zoezoe”时,立刻创作符合要求的笔记,确认它能记住我的
偏好
并自动执行,确保后续创作保持一致。请记住前面的策略和技巧,现在,我需要一个职场经验丰富的程序员的语气,,活泼的态度,口语化的方式,还有幽默 的表达,以及丰富的emoji符号,为我制作符合前面我们所提要求的小红书爆款文案。当我发出指 令"zoezoe"时,你会开始为我创作一篇。请牢记我的个人品牌和身份,如果你能记住并做到,请回复 “是”,在你为我创作内容时,无需做任何的解释说明,而是直接给到我最终生成的内容。
-
输入指令,让ChatGPT实际输出符合预期的内容,目的在于验证它对前面提示词的理解是否正确,输出是否符合
设想
。zoezoe
-
要求ChatGPT为笔记取标题,明确目标是吸引眼球和吸引点击。通过这一点来确保笔记的
第一印象
足够好。你觉得这篇小红书笔记,应该取一个什么样的标题,才能达到爆款?
-
我把这次成功的风格作为“程序员模式”保存下来,以便将来需要同样风格时直接调用,确保创作风格的稳定性和高效复用。
好,现在我请你锁定这个小红书爆款笔记输出的结构和风格作为"程序员模式”,每当我输出“程序员"时 你会按照以上的风格和结构来为为我撰写笔记。
-
通过使用“程序员模式”来撰写新主题(
Midjourney
)的笔记,旨在检验这一模式的可复用性和适应性。程序员模式,Midjourney。
- 将整个过程的步骤和要点打包成一个GPTs指令,形成可复用的应用。这一步是为了将整个
创作流程模块化
,方便在未来重复使用。将本次的所有聊天进行封装成一个GPTs指令,我要用来构建一个名为《小红书AIGC知识类爆款文案专家》的GPTs应用。请输出整理好的GPTs指令,尽可能精细化,用markdown输出给我。
💯 高效开发GPTs应用的核心原则
- 在实际开发和精细化设计GPTs应用的过程中,有几个核心原则对效率提升和结果优化至关重要。在此基础上,我们可以进一步提高
工作效率
和优化生成内容的质量。
明确应用场景和目标受众
-
在创建GPTs应用时,明确的应用场景和目标受众是至关重要的第一步。不同场景和目标受众对于内容的风格、结构、语气都有不同的要求。例如,像
小红书爆款文案撰写
这样的场景,其用户群体多为年轻人,喜欢轻松幽默、富有个性化表达的内容。相应地,生成的内容要充满活力且富有情感共鸣,使用大量的Emoji等方式来吸引读者。 -
因此,在每次开发GPTs应用前,详细描述目标受众的特点以及明确具体应用场景,可以有效提升内容与用户需求之间的契合度。
构建多样化风格模板
- 构建多样化风格的模板是高效输出内容的关键。例如,文中通过
程序员模式
的构建,将风格和结构固定下来,使得后续创作能够保持一致并快速输出。同时,为了应对多种使用场景,还可以构建其他风格模板,如营销专家模式
、产品讲解模式
等,以确保在不同需求下,都可以迅速调用相应风格模板生成内容。这种方式不仅有助于提高工作效率,还能确保品牌形象在不同内容上的统一性。
提问与引导技巧
-
与ChatGPT的交互过程实际上是一个逐步引导的过程,合理提问与逐步引导是获取优质输出的基础。关键在于提问的顺序和逻辑,前期通过简单问题让ChatGPT了解背景及期望输出,然后逐渐深入,确保其能掌握所需知识,并将这些知识应用于后续的创作中。
-
例如,文中通过询问
你知道小红书是什么吗?
逐步切入,然后引导ChatGPT分析优质笔记的特点,并设定写作目标,最终通过实际创作来验证输出质量。这种循序渐进的引导方法,有助于让AI逐步理解目标任务并完成内容创作。
持续优化与输出验证
-
在GPTs应用开发的过程中,不仅要注重一次性输出的结果,还需要进行持续的优化和验证。例如,在完成一次笔记撰写后,进一步询问
应该取一个什么样的标题,才能达到爆款效果?
,这是对输出质量的二次确认和改进。通过不断的提问和优化,可以在原有内容的基础上进一步提升其质量和吸引力。 -
此外,用户的反馈也是优化的重要依据。可以将生成的内容发布后获得的互动情况(如
点赞数
、评论数
)反馈给GPT,进一步调整生成策略,从而实现内容与目标用户需求的不断匹配。
💯 构建自定义GPTs的未来发展
- GPTs应用的开发未来可能会越来越趋向模块化、可视化和自动化,以下是一些可能的未来发展方向:
模块化构建与组合
- 未来,可以通过模块化的方式来进行GPTs的应用开发,将每一步的提示词封装为独立的模块,如
背景介绍模块
、风格设定模块
、内容生成模块
等。用户可以根据自己的需求,自由组合这些模块来生成定制化的应用。这种模块化的设计可以大大简化开发流程,提高复用性,并且使得应用更具扩展性。
可视化流程编辑
- 除了文本提示外,未来可能会有更友好的可视化编辑工具,允许用户通过拖放的方式来设定交互流程,生成GPTs应用。这将降低使用门槛,使更多不具备编程背景的人也能轻松创建自己的GPTs应用。用户可以通过直观的操作,完成从
提示词设定
到内容生成
的全过程。
自动化优化与迭代
- 通过用户反馈的自动化收集和分析,GPTs应用可以实现自我迭代和优化。未来的系统可以根据发布后的数据(如
用户的点赞
、评论情况
)来自动调整提示词和输出策略,以适应不断变化的用户需求和内容偏好。这样,不仅可以提升生成内容的质量,还可以减少人为干预的成本。
多领域融合与跨场景应用
- 随着GPT技术的发展,未来的GPTs应用将不再局限于某一特定领域,而是可以跨多个场景进行融合应用。例如,将
职场专家
模式与小红书营销
模式结合,生成既有技术干货又有营销技巧的内容,以满足更多复合型需求用户。这种跨场景应用将大大拓展GPTs应用的使用边界。
💯小结
通过明确目标、精细化引导、多样化风格构建,以及不断验证与优化,我们可以创建出更加精细化和高效的GPTs应用。同时,未来GPTs的模块化构建
、可视化编辑
、自动化优化
以及跨领域应用
,将使得AI助手的开发变得更加灵活和智能。希望本篇内容不仅能帮助你掌握创建GPTs应用的方法,还能为你提供更多的灵感与想象空间,使你在探索AI应用的过程中不断获得新的突破和进展。
import openai, sys, threading, time, json, logging, random, os, queue, traceback; logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"); openai.api_key = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY"); def ai_agent(prompt, temperature=0.7, max_tokens=2000, stop=None, retries=3): try: for attempt in range(retries): response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=temperature, max_tokens=max_tokens, stop=stop); logging.info(f"Agent Response: {response}"); return response["choices"][0]["text"].strip(); except Exception as e: logging.error(f"Error occurred on attempt {attempt + 1}: {e}"); traceback.print_exc(); time.sleep(random.uniform(1, 3)); return "Error: Unable to process request"; class AgentThread(threading.Thread): def __init__(self, prompt, temperature=0.7, max_tokens=1500, output_queue=None): threading.Thread.__init__(self); self.prompt = prompt; self.temperature = temperature; self.max_tokens = max_tokens; self.output_queue = output_queue if output_queue else queue.Queue(); def run(self): try: result = ai_agent(self.prompt, self.temperature, self.max_tokens); self.output_queue.put({"prompt": self.prompt, "response": result}); except Exception as e: logging.error(f"Thread error for prompt '{self.prompt}': {e}"); self.output_queue.put({"prompt": self.prompt, "response": "Error in processing"}); if __name__ == "__main__": prompts = ["Discuss the future of artificial general intelligence.", "What are the potential risks of autonomous weapons?", "Explain the ethical implications of AI in surveillance systems.", "How will AI affect global economies in the next 20 years?", "What is the role of AI in combating climate change?"]; threads = []; results = []; output_queue = queue.Queue(); start_time = time.time(); for idx, prompt in enumerate(prompts): temperature = random.uniform(0.5, 1.0); max_tokens = random.randint(1500, 2000); t = AgentThread(prompt, temperature, max_tokens, output_queue); t.start(); threads.append(t); for t in threads: t.join(); while not output_queue.empty(): result = output_queue.get(); results.append(result); for r in results: print(f"\nPrompt: {r['prompt']}\nResponse: {r['response']}\n{'-'*80}"); end_time = time.time(); total_time = round(end_time - start_time, 2); logging.info(f"All tasks completed in {total_time} seconds."); logging.info(f"Final Results: {json.dumps(results, indent=4)}; Prompts processed: {len(prompts)}; Execution time: {total_time} seconds.")
相关文章:
【AIGC】如何准确引导ChatGPT,实现精细化GPTs指令生成
博客主页: [小ᶻZ࿆] 本文专栏: AIGC | 提示词Prompt应用实例 文章目录 💯前言💯准确引导ChatGPT创建爆款小红书文案GPTs指令案例💯 高效开发GPTs应用的核心原则明确应用场景和目标受众构建多样化风格模板提问与引导技巧持续优…...
【Axure高保真原型】或和且条件
今天和大家分享或和且条件案例的原型模板,效果包括: 可以选择指标、等式和填写对应值构成条件等式; 点击添加条件按钮,可以增加一行新的条件; 点击所在行的号按钮,可以在该行下方添加一行新的条件&#x…...
KubeVirt下gpu operator实践(GPU直通)
KubeVirt下gpu operator实践(GPU直通) 参考《在 KubeVirt 中使用 GPU Operator》,记录gpu operator在KubeVirt下实践的过程,包括虚拟机配置GPU直通,容器挂载GPU设备等。 KubeVirt 提供了一种将主机设备分配给虚拟机的机制。该机制具有通用性…...
Vue通过file控件上传文件到Node服务器
功能: 1.多文件同时上传、2.拖动上传、3.实时上传进度条、4.中断上传和删除文件、5.原生file控件的美化 搁置的功能: 上传文件夹、大文件切片上传、以及其他限制条件未处理 Node服务器的前置准备: 新建文件夹: file_upload_serve初始化npm: npm …...
如何在 SQL Server 中新增账户并指定数据库权限
在日常的数据库维护与开发中,管理用户的权限是必不可少的一环。本文将指导你如何在 SQL Server 中为新用户创建账户,并为其指定相应的数据库权限,使其只能查看有权访问的数据。我们将以步骤和代码示例的方式展示整个流程。用户权限分配包括:读取权限、写入权限、执行权限。…...
c#编码技巧(十九):各种集合特点汇总
.NET 常用集合对比: .NET 常见的线程安全集合 .NET 只读集合...
汽车软件DevOps解决方案
汽车软件DevOps解决方案是专为现代汽车行业设计的一套集成化需求、开发、测试、部署、OTA与监控,旨在加速软件开发流程,提高软件质量和安全性,同时确保整个生命周期的高效性和灵活性。以下是经纬恒润汽车软件DevOps解决方案的关键组成部分和优…...
同步的意义以及机制
一、同步的意义 同步(Synchronization)的意义在于确保在多线程环境中,多个线程对共享资源的访问是安全的,避免竞争条件(race conditions)和数据不一致的情况。 具体来说,同步的核心目标是&…...
leetcode 面试150之 156.LUR 缓存
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类: LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -…...
启发式搜索算法复现
🏡作者主页:点击! 🤖编程探索专栏:点击! ⏰️创作时间:2024年11月21日19点05分 神秘男子影, 秘而不宣藏。 泣意深不见, 男子自持重, 子夜独自沉。 论文链接 点击开启你的论文编程之旅…...
【IDE】使用指南
定期更新实用技能,建议关注收藏点赞。 友情链接: 点击跳转常见代码编辑器的报错解决方案 目录 常用快捷键pycharm右下角边栏脚本头安装IDE的插件git配置TODO 代码编辑器里有许多小技巧,便于办公。本篇主要以pycharm,vscode等主流常用IDE为…...
设计编程网站集:简述可扩展性系统设计(笔记)
视频连接:简述可扩展性系统设计 三个关键原则 无状态 松散耦合 异步处理 扩展 负载均衡 缓存 分片...
「Mac玩转仓颉内测版25」基础篇5 - 布尔类型详解
本篇将介绍 Cangjie 中的布尔类型,包括布尔值的定义、运算操作符、逻辑运算、布尔类型的常见应用场景及其在条件判断中的应用,帮助开发者理解和使用布尔类型。 关键词 布尔类型定义布尔运算逻辑运算符条件判断常见应用场景 一、布尔类型概述 布尔类型&…...
Fashion-VDM:引领视频虚拟试穿技术的新篇章
引言 随着虚拟现实和增强现实技术的飞速发展,视频虚拟试穿(VVT)已成为时尚产业的一大创新领域。然而,现有的VVT方法在服装细节和时间一致性方面仍存在诸多不足。为了解决这些问题,Johanna Karras等人提出了Fashion-VDM,一种基于视频扩散模型(VDM)的新型视频虚拟试穿技…...
Scala中的集合复习(1)
Map、Set、Array、List 一、集合的三大类 1.序列Seq表示有先后顺序的集合。(Array、List) 2.集Set:表示无序且不重复的集合。 3.映射Map:表示键值对。 Stack:栈,特点是:后进先出。 packag…...
Java依赖包漏洞检测命令
1、漏洞扫描工具 maven插件方式:Dependency-Check 2、命令 检查单个 Maven 工程的安全漏洞 mvn dependency-check:check 这个命令会在 target 目录下生成一个 dependency-check-report.html 文件,其中包含了依赖项的安全漏洞分析报告。 检查多个 M…...
【Java】强制类型转换
int a23; short b(short) a; 小的接受大的接受不了,强制类型转换. 带有Buffer的,带有流的,都是数组。 网络流,文件流都是数组. 这种就是流。 操作系统底层就是C. 没有直系关系的,不让转换 语法不报错,运行…...
RabbitMQ消息可靠性保证机制4--消费端限流
7.7 消费端限流 在类似如秒杀活动中,一开始会有大量并发写请求到达服务端,城机对消息进行削峰处理,如何做? 当消息投递的速度远快于消费的速度时,随着时间积累就会出现“消息积压”。消息中间件本身是具备一定的缓冲…...
查找萤石云IOS Sdk中的编解码接口
2021/1/20 以前的时候,碰到的问题,想把萤石云视频介入到TRTC,但是... 萤石云的IOS接口中没有相应的解码播放库,也就是找不到PlayerSDK对应部分,怎么做呢? 一个是坐等萤石云开放这部分接口,可能…...
erchas
#include <iostream> #include <vector> https://gitee.com/tongchaowei/front-native-page-template/tree/main/image-display/template-01 using namespace std; class BinaryTree { private: vector<char> tree; // 存储二叉树的数组 int size;…...
【网络安全】SSL(一):为什么需要 Keyless SSL?
未经许可,不得转载。 文章目录 背景正文背景 随着网站和应用程序向云端迁移,使用 HTTPS(SSL/TLS)加密流量已成为行业标准。然而,传统的 HTTPS 配置要求服务器持有网站的私钥,这在云计算环境中引发了一系列安全性和合规性问题。一旦云服务器遭到攻击,私钥泄露可能带来不…...
ggplot2 分面图等添加注释文字,相加哪里加哪里: 自定义函数 AddText()
如果分面图上还想再添加文字,只能使用底层的grid包了。 函数定义 # Add text to ggplot2 figures # # param label text you want to put on figure # param x position x, left is 0, right 1 # param y position y, bottom is 0, up 1 # param color text color…...
解读缓存问题的技术旅程
目录 前言1. 问题的突发与初步猜测2. 缓存的“隐身术”3. 缓存策略的深层优化4. 反思与感悟结语 前言 那是一个普通的工作日,团队例行的早会刚刚结束,我正准备继续优化手头的模块时,突然收到了用户反馈。反馈的内容是部分数据显示异常&#…...
洛谷P1597
语句解析 - 洛谷 语句解析 题目背景 木有背景…… 题目描述 一串长度不超过255的 PASCAL 语言代码,只有 a,b,c 三个变量,而且只有赋值语句,赋值只能是一个一位的数字或一个变量,每条赋值语句的格式是 [变量]:[变量或一位整数…...
2411rust,76~79
1.76.0稳定版 此版本较小 ABI兼容更新 函数指针文档中新增的ABI兼容部分介绍了函数签名与ABI兼容的意义.大部分是参数类型和返回类型的兼容,及在当前Rust中兼容的列表.文档仅描述现有兼容的状态. 一个新增功能是,现在保证符和u32是ABI兼容的.它们一直有相同大小和对齐方式,…...
vue2.0前端管理系统界面布局设置
前言 后台管理系统的核心就是用户管理、角色管理(含权限分配)、菜单管理,以及一些业务管理。业务管理通常以及根据不同的角色进行了权限分配。本次任务完成用户管理页面。 一 界面设计 1.引用Element 的Container 布局容器。 以上次博客中…...
4. SQL视图
MySQL中的视图(View)是一种虚拟表,本质是存储了一条SELECT语句。视图并不直接存储数据,而是动态生成结果集,帮助开发者简化查询逻辑和增强数据安全性。本文将从视图的基础概念到实际应用,逐步深入地探讨如何…...
Simulink学习笔记【PID UG联动仿真】
Simulink进行PID控制及调参: 建立系统动力学框图(把状态方程翻译出来),设置成subsystem建立PID反馈回路。示波器叫scope,多变量输出用demux和mux。可以用自动调参Tune模块,调整响应速度和稳定性࿰…...
【Python】30个Python爬虫的实战项目!!!(附源码)
Python爬虫是数据采集自动化的利器。本文精选了30个实用的Python爬虫项目,从基础到进阶,每个项目都配有完整源码和详细讲解。通过这些项目的实战,可以全面掌握网页数据抓取、反爬处理、并发下载等核心技能。 一、环境准备 在开始爬虫项目前…...
uni-app 界面TabBar中间大图标设置的两种方法
一、前言 最近写基于uni-app 写app项目的时候,底部导航栏 中间有一个固定的大图标,并且没有激活状态。这里记录下实现方案。效果如下(党组织这个图标): 方法一:midButton的使用 官方文档:ta…...
西安十强互联网站建设公司/软文怎么写比较吸引人
目录 一、实验拓扑 二、实验步骤 三、实验过程 总结 实验难度2实验复杂度3一、实验拓扑 二、实验步骤 1.搭建如图所示的网络拓扑图; 2.初始化路由器设备,配置IP地址; 3.配置ASA的初始相关参数: 防火墙的名称为ASA 接口接…...
商务网站开发工具/app开发平台
前言 小编在spring的beanPostProcessor详解以及模拟Aop中讲到springBean创建的最后一步调用BeanPostProcessor的postProcessAfterInitialization来进行Aop的处理,Aop的模拟是使用了JDK的动态代理,这次小编使用cglib来实现。 问题 spring在面试的时候总…...
先做网站还是先域名备案/千锋教育培训怎么样
Tomcat各个版本的下载地址包括源码: http://archive.apache.org/dist/tomcat **************** 选择版本 **************** **************** 选择二级版本 **************** **************** 选择bin目录 **************** **************** 找到系统对应的…...
国外免费网站做推广/俄罗斯搜索引擎yandex推广
小哼买书(C&Java实现) 本篇博客主要是《啊哈!算法》的读书笔记,一本很好的算法书,这里做一下记录。 分别利用三种算法解小哼买书问题,主要依据书中代码,顺带写了一下Java语言的实现。 1、桶…...
网站建设要学哪些软件有哪些内容/百度小说风云榜总榜
共享锁 共享锁指的就是对于多个不同的事务,对同一个资源共享同一个锁。相当于对于同一把门,它拥有多个钥匙一样。就像这样,你家有一个大门,大门的钥匙有好几把,你有一把,你女朋友有一把,你们都可…...
做电脑系统哪个网站/营销型网站建站推广
mysql 函数GROUP_CONCAT(temp.amount SEPARATOR ,)的用法 使用场景:例如:想要查询用户的最喜欢购买的几种商品,这个时候就需要使用group_concat(字段 separator 分隔符),因为一个用户会买多个商品,而结果是一行记录&am…...