AWS IAM
一、介绍
1、简介
AWS Identity and Access Management (IAM) 是 Amazon Web Services 提供的一项服务,用于管理 AWS 资源的访问权限。通过 IAM,可以安全地控制用户、组和角色对 AWS 服务和资源的访问权限。IAM 是 AWS 安全模型的核心组成部分,确保只有经过授权的用户和应用程序才能访问 AWS 资源。
二、主要概念
1、账户Account
账户可以被认为是一个公司或组织(在 AWS 上的代表),是资源的最高层级容器,所有的 AWS 资源都在某个 AWS 账户下创建和管理。
AWS 账户代表一个独立的所有者空间,用于管理和计费 AWS 资源。每个账户都有一个唯一的 account-id。
在 AWS 中,账户划分通常根据组织的需求和最佳实践进行,以确保安全性、成本管理和资源隔离。以下是一些常见的 AWS 账户划分策略:
- 按环境划分:开发账户,测试账户,生产账户- 按部门或团队划分:营销账户,销售账户,工程账户- 按项目划分:项目 A 账户,项目 B 账户- 按业务单元划分:业务单元 1 账户,业务单元 2 账户- 按混合划分:项目A-开发账户,项目A-生产账户,项目B-开发账户,项目B-生产账户
2、用户User
IAM 用户是 AWS 账户中的唯一身份,可以是个人、应用程序或服务。每个用户都有唯一的凭证(如用户名和密码、访问密钥)。
3、组(Group)
IAM 组是用户的集合。可以将用户添加到组中
相关文章:
AWS IAM
一、介绍 1、简介 AWS Identity and Access Management (IAM) 是 Amazon Web Services 提供的一项服务,用于管理 AWS 资源的访问权限。通过 IAM,可以安全地控制用户、组和角色对 AWS 服务和资源的访问权限。IAM 是 AWS 安全模型的核心组成部分,确保只有经过授权的用户和应…...
丹摩|丹摩助力selenium实现大麦网抢票
丹摩|丹摩助力selenium实现大麦网抢票 声明:非广告,为用户体验 1.引言 在人工智能飞速发展的今天,丹摩智算平台(DAMODEL)以其卓越的AI算力服务脱颖而出,为开发者提供了一个简化AI开发流程的强…...
基于Qt/C++/Opencv实现的一个视频中二维码解析软件
本文详细讲解了如何利用 Qt 和 OpenCV 实现一个可从视频和图片中检测二维码的软件。代码实现了视频解码、多线程处理和界面更新等功能,是一个典型的跨线程图像处理项目。以下分模块对代码进行解析。 一、项目的整体结构 项目分为以下几部分: 主窗口 (M…...
智慧理财项目测试文档
目录 幕布思维导图链接:https://www.mubu.com/doc/6xk3c7DzgFs学习链接:https://www.bilibili.com/video/BV15J4m147vZ/?spm_id_from333.999.0.0&vd_source078d5d025b9cb472d70d8fda1a7dc5a6智慧理财项目测试文档项目介绍项目基本信息项目业务特性系…...
R | 统一栅格数据的坐标系、分辨率和行列号
各位同学,在做相关性等分析时,经常会遇到各栅格数据间的行列号不统一等问题,下面的代码能直接解决这类麻烦。以某个栅格数据的坐标系、分辨率和行列号为准,统一文件夹内所有栅格并输出到新的文件夹。 代码只需要更改输入输出和ti…...
C++学习——编译的过程
编译的过程——预处理 引言预处理包含头文件宏定义指令条件编译 编译、链接 引言 C程序编译的过程:预处理 -> 编译(优化、汇编)-> 链接 编译和链接的内容可以查阅这篇文章(点击查看) 预处理 编译预处理是指&a…...
当你要改文件 但是原来的文件内容又不能丢失的时候,拷贝一份(备注原来的),然后添加后缀:.bak
当你要改文件 但是原来的文件内容又不能丢失的时候,拷贝一份(备注原来的),然后添加后缀:.bak !!!文件不要直接删除,若你以后要还原的话会找不到...
MATLAB神经网络(五)——R-CNN视觉检测
5.1 目标分类、检测与分割 在计算机视觉领域,目标分类、检测与分割是常用计数。三者的联系与区分又在哪呢?目标分类是解决图像中的物体是什么的问题;目标检测是解决图像中的物体是什么,在哪里的问题;目标分割时将目标和…...
mock.js:定义、应用场景、安装、配置、使用
前言:什么是mock.js? 作为一个前端程序员,没有mockjs你不感觉很被动吗?你不感觉你的命脉被后端那个男人掌握了吗?所以,我命由我不由天!学学mock.js吧! mock.js 是一个用于生成随机…...
【GAT】 代码详解 (1) 运行方法【pytorch】可运行版本
GRAPH ATTENTION NETWORKS 代码详解 前言0.引言1. 环境配置2. 代码的运行2.1 报错处理2.2 运行结果展示 3.总结 前言 在前文中,我们已经深入探讨了图卷积神经网络和图注意力网络的理论基础。还没看的同学点这里补习下。接下来,将开启一个新的阶段&#…...
Transformer中的Self-Attention机制如何自然地适应于目标检测任务
Transformer中的Self-Attention机制如何自然地适应于目标检测任务: 特征图的降维与重塑 首先,Backbone(如ResNet、VGG等)会输出一个特征图,这个特征图通常具有较高的通道数、高度和宽度(例如CHWÿ…...
2411rust,1.75.0
原文 Rust团队很高兴地声明推出Rust的新版本1.75.0. 如果你rustup安装了以前版本的Rust,你可如下取1.75.0: $ rustup update stable1.75.0稳定版中的功能 async fn和特征中的返回位置impl Trait. 指针字节偏移API 原始指针(*const T和*mutT)过去主要支持,T为单位的操作.如…...
远程办公新宠:分享8款知识共享软件
远程办公模式下,知识共享软件成为了团队协作和沟通的重要工具。以下是8款备受推崇的知识共享软件: 1、HelpLook AI知识库 简介:HelpLook是一款快速搭建AI知识库的系统,具备强大功能,如快速精准的知识检索、灵活定制的…...
3.9MayBeSomeAssembly
就是先从数组里,乘4得到正确地址 32(&s3),s3是基址,32是偏移量,就是先从数组里取出数到临时寄存器,然后再在临时寄存器上加上变量,最后再把临时寄存器上的变量存到数组里,偏移量࿰…...
i春秋-签到题
练习平台地址 竞赛中心 题目描述 题目内容 点击GUESS后会有辨识细菌的选择题 全部完成后会有弹窗提示 输入nickname后提示获得flag F12检查 元素中没有发现信息 检查后发现flag在控制台中 flag flag{663a5c95-3050-4c3a-bb6e-bc4f2fb6c32e} 注意事项 flag不一定要在元素中找&a…...
TypeScript 中扩展现有模块的用法
declare module 是 TypeScript 中用于扩展现有模块的特性。它允许开发者在已有模块的基础上,添加新的功能(比如扩展接口、添加类型声明等)。通过 declare module,可以将额外的声明合并到原模块中。以下是用法详解: 用…...
【报错记录】解决Termux中pulseaudio启动报错,报:E: [pulseaudio] main.c: Daemon startup failed.
前言 在尝试使用Termux-X11启动Minecraft过程中,不知道怎么回事原本好好的pulseaudio居然无法启动了,一直在报: E: [pulseaudio] main.c: Daemon startup failed. 重装了好几次也没用解决方案如下。 排除重复启动 如果pulseaudio之前已经…...
Java list
在 Java 中,链表(LinkedList)是一个非常重要的数据结构,它可以动态地插入和删除元素,因此比数组更灵活。Java 提供了 LinkedList 类,该类实现了 List 接口,并且是基于双向链表实现的,…...
MAC借助终端上传jar包到云服务器
前提:保证工程本地已打包完成:图中路径即为项目的target目录下已准备好的jar包 第一步:打开终端(先不要连接自己的服务器),输入下面的上传命令: scp /path/to/local/app.jar username192.168.1…...
对原jar包解压后修改原class文件后重新打包为jar
文章目录 背景三种修改方式1.POM中移除原jar中依赖的历史版本2.原jar它不使用pom依赖而是直接放在源码中再编译使用JarEditor 插件对源码进行修改(推荐)使用java-decompiler反编译后修改源码覆盖原class(不好用-不推荐直接跳过)提醒 参考资料-推荐阅读拓…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
