当前位置: 首页 > news >正文

算法.图论-习题全集(Updating)

文章目录

  • 本节设置的意义
  • 并查集篇
    • 并查集简介以及常见技巧
    • 并查集板子(洛谷)
    • 情侣牵手问题
    • 相似的字符串组
    • 岛屿数量(并查集做法)
    • 省份数量
    • 移除最多的同行或同列石头
    • 最大的人工岛
    • 找出知晓秘密的所有专家
  • 建图及其拓扑排序篇
    • 链式前向星建图板子
    • 课程表

本节设置的意义

主要就是为了复习图论算法, 尝试从题目解析的角度,更深入的理解图论算法…

并查集篇

并查集简介以及常见技巧

并查集是一种用于大集团查找, 合并等操作的数据结构, 常见的方法有

  • find: 用来查找元素在大集团中的代表元素(这里使用的是扁平化的处理)
  • isSameSet: 用来查找两个元素是不是一个大集团的(其实就是find的应用)
  • union: 用来合并两大集团的元素

关于并查集打标签的技巧, 其实我们之前的size数组也是一种打标签的逻辑, 其实打标签就是给每一个集团的代表节点打上标签即可, 还有我们在并查集的题目中通常会设置一个sets作为集合的总数目(每次合并–), 这是一个常见的技巧, 并查集的细节我们在这里不进行过多的介绍, 在之前的章节中有细致的描述…

并查集板子(洛谷)

这里我们的并查集的板子使用的是洛谷的板子(小挂大的优化都没必要其实)

// 并查集模版(洛谷)
// 本实现用递归函数实现路径压缩,而且省掉了小挂大的优化,一般情况下可以省略
// 测试链接 : https://www.luogu.com.cn/problem/P3367import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;public class Main{public static int MAXN = 10001;public static int[] father = new int[MAXN];public static int n;public static void build() {for (int i = 0; i <= n; i++) {father[i] = i;}}public static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}public static boolean isSameSet(int x, int y) {return find(x) == find(y);}public static void union(int x, int y) {father[find(x)] = find(y);}public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {n = (int) in.nval;build();in.nextToken();int m = (int) in.nval;for (int i = 0; i < m; i++) {in.nextToken();int z = (int) in.nval;in.nextToken();int x = (int) in.nval;in.nextToken();int y = (int) in.nval;if (z == 1) {union(x, y);} else {out.println(isSameSet(x, y) ? "Y" : "N");}}}out.flush();out.close();br.close();}}

情侣牵手问题

在这里插入图片描述
本题的突破点就是如果一个大集团里面有 n 对情侣, 那么我们至少要交换 n - 1次(通过把情侣进行编号)

// 这次我们尝试使用轻量版的并查集来解决这道题
class Solution {private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static int sets = 0;private static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {int fa = find(a);int fb = find(b);if (fa != fb) {father[fa] = fb;sets--;}}// 初始化并查集private static void build(int n) {for (int i = 0; i < n; i++) {father[i] = i;}sets = n;}public int minSwapsCouples(int[] row) {build(row.length / 2);for (int i = 0; i < row.length; i += 2) {int n1 = row[i] / 2;int n2 = row[i + 1] / 2;union(n1, n2);}return row.length / 2 - sets;}
}

相似的字符串组

在这里插入图片描述
其实就是枚举每一个位置, 然后判断是不是一组的就OK了

// 还是使用一下轻量级的并查集板子
class Solution {private static final int MAX_SZ = 301;private static final int[] father = new int[MAX_SZ];private static int sets = 0;private static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {int fa = find(a);int fb = find(b);if (fa != fb) {father[fa] = fb;sets--;}}// 初始化并查集private static void build(int n) {for (int i = 0; i < n; i++) {father[i] = i;}sets = n;}public int numSimilarGroups(String[] strs) {build(strs.length);// 主流程的时间复杂度是 O(n ^ 2), 遍历strs的每一个位置int m = strs[0].length();for (int i = 0; i < strs.length; i++) {for (int j = i + 1; j < strs.length; j++) {// 获取到两个字符串, 然后计算两个字符串的不同字符数量String s1 = strs[i];String s2 = strs[j];int diff = 0;for (int k = 0; k < m && diff < 3; k++) {if (s1.charAt(k) != s2.charAt(k))diff++;}if (diff == 0 || diff == 2)union(i, j);}}return sets;}
}

岛屿数量(并查集做法)

在这里插入图片描述
这道题的解法非常多, 比如多源 BFS , 洪水填充(其实就是递归加回溯) , 还有今天介绍的并查集的方法(这个方法不是最好的)

// 这个题的并查集做法只要注意一点就可以了: 把一个二维下标转化为一维下标
class Solution {private static final int MAX_SZ = 301 * 301;private static final int[] father = new int[MAX_SZ];private static int sets = 0;private static int row = 0;private static int col = 0;// 模拟bfs的move数组private static final int[] move = { -1, 0, 1, 0, -1 };private static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {int fa = find(a);int fb = find(b);if (fa != fb) {father[fa] = fb;sets--;}}private static void build(char[][] grid, int rl, int cl) {row = rl;col = cl;sets = 0;for (int i = 0; i < row; i++) {for (int j = 0; j < col; j++) {if (grid[i][j] == '1') {sets++;father[getIndex(i, j)] = getIndex(i, j);}}}}public int numIslands(char[][] grid) {// 初始化并查集并统计 '1' 的数量build(grid, grid.length, grid[0].length);// 遍历grid进行合并for (int i = 0; i < row; i++) {for (int j = 0; j < col; j++) {// 向四个方向扩展if (grid[i][j] == '1') {for (int k = 0; k < 4; k++) {int nx = i + move[k];int ny = j + move[k + 1];if (nx >= 0 && nx < row && ny >= 0 && ny < col && grid[nx][ny] == '1') {union(getIndex(i, j), getIndex(nx, ny));}}}}}return sets;}// 二维下标转一维下标private static int getIndex(int i, int j) {return i * col + j;}
}

省份数量

在这里插入图片描述
没什么可说的, 就是一个简单的并查集的思路

class Solution {// 这其实也是一个并查集的题private static final int MAXM = 201;private static final int[] father = new int[MAXM];private static final int[] size = new int[MAXM];private static int sets = 0;private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){if(!isSameSet(a, b)){int fa = find(a);int fb = find(b);if(size[fa] > size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}sets--;}}private static void build(int n){for(int i = 0; i < n; i++){father[i] = i;size[i] = 1;}sets = n;}public int findCircleNum(int[][] isConnected) {// 初始化并查集build(isConnected.length);for(int i = 0; i < isConnected.length; i++){int[] info = isConnected[i];for(int j = 0; j < info.length; j++){if(info[j] == 1){union(i, j);}}}return sets;}
}

移除最多的同行或同列石头

在这里插入图片描述
其实就是每一个集团最后都会被消成一个元素, 我们中间用哈希表加了一些关于离散化的处理的技巧

// 使用一下轻量版本的并查集加上哈希表进行离散化的操作
class Solution {private static Map<Integer, Integer> rowFirst = new HashMap<>();private static Map<Integer, Integer> colFirst = new HashMap<>();private static final int MAXM = 1001;private static final int[] father = new int[MAXM];private static int sets = 0;private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){father[fa] = fb;sets--;}}// 初始化并查集private static void build(int n){for(int i = 0; i < n; i++){father[i] = i;}sets = n;}public int removeStones(int[][] stones) {// 清空哈希表rowFirst.clear();colFirst.clear();// 初始化并查集build(stones.length);for(int i = 0; i < stones.length; i++){int row = stones[i][0];int col = stones[i][1];if(!rowFirst.containsKey(row)){rowFirst.put(row, i);}else{union(rowFirst.get(row), i);}if(!colFirst.containsKey(col)){colFirst.put(col, i);}else{union(colFirst.get(col), i);}}return stones.length - sets;}}

最大的人工岛

在这里插入图片描述
本题注意的点就是, 首先我们二维的矩阵, 想要使用并查集, 需要先把二维的坐标转化为一维的坐标, 然后通过一维的坐标使用并查集, 首先把所有的岛进行合并, 然后来到一个 空位置 , 就尝试向四个方向进行扩展尝试进行岛屿的链接, 最后返回最大的连成一片的岛屿数量即可

/*** 本题我们是采用的并查集(轻量板子)的方法来做*  核心点就是首先使用 并查集 (二维下标转换一维下标) 进行人工岛的合并*  本题需要我们使用size的辅助信息, 因为 size 也相当于打标签的技巧*  然后枚举每一个位置进行岛屿的合并*/
class Solution {private static final int MAX_LEN = 501;private static final int MAX_SIZE = MAX_LEN * MAX_LEN;private static final int[] father = new int[MAX_SIZE];private static final int[] size = new int[MAX_SIZE];private static int len = 0;private static final int[] move = {-1, 0, 1, 0, -1};private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){if(!isSameSet(a, b)){int fa = find(a);int fb = find(b);if(size[fa] > size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}// 初始化并查集private static void build(int[][] grid){len = grid.length;for(int i = 0; i < len; i++){for(int j = 0; j < len; j++){if(grid[i][j] == 1){int index = getIndex(i, j);father[index] = index;size[index] = 1;}}}}// 二维下标转换为一维下标private static int getIndex(int i, int j){return i * len + j;}public int largestIsland(int[][] grid) {build(grid);int res = 0;// 遍历矩阵进行合并for(int i = 0; i < len; i++){for(int j = 0; j < len; j++){if(grid[i][j] == 1){// 此时向四周进行扩展合并for(int k = 0; k < 4; k++){int nx = i + move[k];int ny = j + move[k + 1];if(nx >= 0 && nx < len && ny >= 0 && ny < len && grid[nx][ny] == 1){union(getIndex(i, j), getIndex(nx, ny));}}   // 尝试进行人工岛最大面积的更新res = Math.max(res, size[find(getIndex(i, j))]);}}}// 遍历所有的 0 位置, 尝试向四周进行枚举更新最大值// 创建一个map用来进行去重Set<Integer> set = new HashSet<>();for(int i = 0; i < len; i++){for(int j = 0; j < len; j++){if(grid[i][j] == 0){set.clear();int tempRes = 1;// 向四周进行扩展然后尝试进行岛屿链接for(int k = 0; k < 4; k++){int nx = i + move[k];int ny = j + move[k + 1];if(nx >= 0 && nx < len && ny >= 0 && ny < len && grid[nx][ny] == 1){int f = find(getIndex(nx, ny));if(!set.contains(f)){tempRes += size[f];set.add(f);}}}res = Math.max(res, tempRes); }}}return res;}
}

找出知晓秘密的所有专家

在这里插入图片描述
本题我们运用的是一种打标签的技巧, 还有就是注意的是并查集如何进行拆解, 其实就是修改一下father数组的内容, 然后把size数组的值置为1即可

/*** 本题主要就是涉及到并查集的打标签的技巧, 还有如何拆散一个并查集* 首先就是关于并查集打标签: 其实就是给集团领袖节点打上标签信息(类似size数组)* 关于拆散并查集: 其实就是把father数组重新设置为自身, size置为1(如果有的话)*/class Solution {// 并查集轻量化的板子private static final int MAXN = 100001;private static final int[] father = new int[MAXN];private static final boolean[] knowSecrets = new boolean[MAXN];private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){if(!isSameSet(a, b)){father[find(a)] = find(b);}}// 初始化并查集private static void build(int n, int firstPerson){for(int i = 0; i < n; i++){father[i] = i;knowSecrets[i] = false;}// 初始化知道秘密的集团(只需要给领袖节点打上标签就好了)union(0, firstPerson);knowSecrets[0] = true;knowSecrets[firstPerson] = true;}public List<Integer> findAllPeople(int n, int[][] meetings, int firstPerson) {// 首先初始化并查集build(n, firstPerson);// 把meetings进行排序便于处理Arrays.sort(meetings, (a, b) -> a[2] - b[2]);int l = 0;int r = 0;while(l < meetings.length){// 首先把r指针置为l的位置r = l;int tempL = l;// 向右侧扩充(结束的时候r指向的下一个不同的元素的边界位置)while(r < meetings.length && meetings[r][2] == meetings[l][2]){r++;}// 先便利一边并查集进行集合元素的合并while(l < r){union(meetings[l][0], meetings[l][1]);if(isSameSet(0, meetings[l][0])) knowSecrets[meetings[l][0]] = true;if(isSameSet(0, meetings[l][1])) knowSecrets[meetings[l][1]] = true;l++;}// 再次便利一边这个时间点的元素进行集合的拆解l = tempL;while(l < r){if(!isSameSet(meetings[l][0], 0) && !isSameSet(meetings[l][1], 0)){father[meetings[l][0]] = meetings[l][0];father[meetings[l][1]] = meetings[l][1];}l++;}l = r;}// 进行元素的收集List<Integer> res = new ArrayList<>();for(int i = 0; i < n; i++){if(isSameSet(0, i)){res.add(i);}}return res;}
}

建图及其拓扑排序篇

建图的方法有三种, 邻接表, 邻接矩阵, 以及链式前向星, 我们更推荐的是静态空间的链式前向星的建图法, 下面是链式前向星的板子

链式前向星建图板子

/*** 关于大厂笔试以及比赛中的建图方式的测试, 其实就是使用静态的数组空间进行建图* 我们设置 3 / 4 / 5 个静态数组空间* head数组(存储点对应的头边编号), next数组(边对应下一条边的编号), to数组(边去往的点), weight数组(边对应的权值), indegree数组(点对应的入度)* 关于拓扑排序(topoSort), 我们最常用的方法其实就是零入度删除法(使用队列, 必要的时候使用小根堆), 关于是否环化的判断我们使用计数器实现* 下面是我们提供的链式建图的板子, 以及拓扑排序的板子*/public class createGraphByLinkedProStar{// 设置点的最大数量private static final int MAXN = 10001;// 设置边的最大数量private static final int MAXM = 10001;// head数组private static final int[] head = new int[MAXN];// next数组private static final int[] next = new int[MAXM];// to数组private static final int[] to = new int[MAXM];// weight数组private static final int[] weight = new int[MAXM];// indegree数组(统计入度)private static final int[] indegree = new int[MAXN];// cnt统计边的数量private static int cnt = 1;// 添加边的方法(顺便统计入度)private static void addEdge(int u, int v, int w){next[cnt] = head[u];to[cnt] = v;weight[cnt] = w;head[u] = cnt++;indegree[v]++;}// 初始化静态空间(只需要清空head以及indegree数组)然后建图(这里是有向带权图)private static void build(int n, int[][] edges){cnt = 1;for(int i = 0; i <= n; i++){indegree[i] = 0;head[i] = 0;}for(int[] edge : edges){addEdge(edge[0], edge[1], edge[2]);}}// 拓扑排序(topoSort的板子)private static int[] topoSort(int n){// 首先创建一个队列(将来可以作为结果返回)int[] queue = new int[n];int l = 0;int r = 0;// 遍历入度表, 添加所有0入度的点进队列for(int i = 0; i < n; i++){if(indegree[i] == 0){queue[r++] = i;}}// 利用链式前向星的遍历开始跑拓扑排序int elemCnt = 0;while(l < r){int cur = queue[l++];elemCnt++;for(int ei = head[cur]; ei != 0; ei = next[ei]){if(--indegree[to[ei]] == 0){queue[r++] = to[ei];}}}return elemCnt == n ? queue : new int[0];}}

课程表

标准的使用拓扑排序的板子 + 加上链式前向星建图法直接打败 100 %

在这里插入图片描述

class Solution {// 设置点的最大数量private static final int MAXN = 10001;// 设置边的最大数量private static final int MAXM = 10001;// head数组private static final int[] head = new int[MAXN];// next数组private static final int[] next = new int[MAXM];// to数组private static final int[] to = new int[MAXM];// indegree数组(统计入度)private static final int[] indegree = new int[MAXN];// cnt统计边的数量private static int cnt = 1;// 添加边的方法(顺便统计入度)private static void addEdge(int u, int v){next[cnt] = head[u];to[cnt] = v;head[u] = cnt++;indegree[v]++;}// 初始化静态空间(只需要清空head以及indegree数组)然后建图(这里是有向带权图)private static void build(int n, int[][] edges){cnt = 1;for(int i = 0; i <= n; i++){indegree[i] = 0;head[i] = 0;}for(int[] edge : edges){addEdge(edge[1], edge[0]);}}// 拓扑排序(topoSort的板子)private static int[] topoSort(int n){// 首先创建一个队列(将来可以作为结果返回)int[] queue = new int[n];int l = 0;int r = 0;// 遍历入度表, 添加所有0入度的点进队列for(int i = 0; i < n; i++){if(indegree[i] == 0){queue[r++] = i;}}// 利用链式前向星的遍历开始跑拓扑排序int elemCnt = 0;while(l < r){int cur = queue[l++];elemCnt++;for(int ei = head[cur]; ei != 0; ei = next[ei]){if(--indegree[to[ei]] == 0){queue[r++] = to[ei];}}}return elemCnt == n ? queue : new int[0];}public int[] findOrder(int numCourses, int[][] prerequisites) {build(numCourses, prerequisites);return topoSort(numCourses);}
}

相关文章:

算法.图论-习题全集(Updating)

文章目录 本节设置的意义并查集篇并查集简介以及常见技巧并查集板子(洛谷)情侣牵手问题相似的字符串组岛屿数量(并查集做法)省份数量移除最多的同行或同列石头最大的人工岛找出知晓秘密的所有专家 建图及其拓扑排序篇链式前向星建图板子课程表 本节设置的意义 主要就是为了复习…...

this.$prompt 限制输入长度

this.$prompt(请输入关键词名称, 提示, {confirmButtonText: 确定,cancelButtonText: 取消,inputPattern: /^\d{0,50}$/,inputErrorMessage: 关键词名称长度不能超过50个字符 }).then(({ value }) > {})...

JDBC使用p6spy记录实际执行SQL方法【解决SQL打印两次问题】

p6spy介绍 p6spy 是一个开源的 JDBC 数据源代理工具&#xff0c;主要用于拦截和记录应用程序与数据库之间的所有 SQL 操作&#xff0c;方便开发者进行 SQL 调试、性能监控和问题排查。 p6spy可以打印实际执行的sql&#xff0c;在开发过程中方便调试&#xff0c;和使用框架无关…...

问题: redis-高并发场景下如何保证缓存数据与数据库的最终一致性

在高并发场景下&#xff0c;Redis 通常用作缓存层&#xff0c;与数据库结合使用以提高系统的性能。为了保证缓存数据与数据库的最终一致性&#xff0c;通常采用的有双写机制、缓存失效机制&#xff0c;基于双写机制、缓存失效机制又衍生出来了消息队列、事件驱动架构等 常见机…...

Stable Diffusion核心网络结构——CLIP Text Encoder

&#x1f33a;系列文章推荐&#x1f33a; 扩散模型系列文章正在持续的更新&#xff0c;更新节奏如下&#xff0c;先更新SD模型讲解&#xff0c;再更新相关的微调方法文章&#xff0c;敬请期待&#xff01;&#xff01;&#xff01;&#xff08;本文及其之前的文章均已更新&…...

C语言-11-18笔记

1.C语言数据类型 类型存储大小值范围char1 字节-128 到 127 或 0 到 255unsigned char1 字节0 到 255signed char1 字节-128 到 127int2 或 4 字节-32,768 到 32,767 或 -2,147,483,648 到 2,147,483,647unsigned int2 或 4 字节0 到 65,535 或 0 到 4,294,967,295short2 字节…...

数据结构_图的遍历

深度优先搜索遍历 遍历思想 邻接矩阵上的遍历算法 void Map::DFSTraverse() {int i, v;for (i 0; i < MaxLen; i){visited[i] false;}for (i 0; i < Vexnum; i){// 如果顶点未访问&#xff0c;则进行深度优先搜索if (visited[i] false){DFS(i);}}cout << endl…...

设计LRU缓存

LRU缓存 LRU缓存的实现思路LRU缓存的操作C11 STL实现LRU缓存自行设计双向链表 哈希表 LRU&#xff08;Least Recently Used&#xff0c;最近最少使用&#xff09;缓存是一种常见的缓存淘汰算法&#xff0c;其基本思想是&#xff1a;当缓存空间已满时&#xff0c;移除最近最少使…...

python中的base64使用小笑话

在使用base64的时候将本地的图片转换为base64 代码如下&#xff0c;代码绝对正确 import base64 def image_to_data_uri(image_path):with open(image_path, rb) as image_file:image_data base64.b64encode(image_file.read()).decode(utf-8)file_extension image_path.sp…...

Python之time时间库

time时间库 概述获取当前时间time库datetime库区别 时间元组处理获取时间元组的各个部分时间戳和时间元组的转换 格式化时间格式化时间解析时间格式符号说明 暂停程序计时操作简单计时高精度计时计时器类的实现 UTC时间操作time库datetime库 概述 time是Python标准库中的一个模…...

Easyexcel(4-模板文件)

相关文章链接 Easyexcel&#xff08;1-注解使用&#xff09;Easyexcel&#xff08;2-文件读取&#xff09;Easyexcel&#xff08;3-文件导出&#xff09;Easyexcel&#xff08;4-模板文件&#xff09; 文件导出 获取 resources 目录下的文件&#xff0c;使用 withTemplate 获…...

国产linux系统(银河麒麟,统信uos)使用 PageOffice 动态生成word文件

PageOffice 国产版 &#xff1a;支持信创系统&#xff0c;支持银河麒麟V10和统信UOS&#xff0c;支持X86&#xff08;intel、兆芯、海光等&#xff09;、ARM&#xff08;飞腾、鲲鹏、麒麟等&#xff09;、龙芯&#xff08;LoogArch&#xff09;芯片架构。 数据区域填充文本 数…...

Window11+annie 视频下载器安装

一、ffmpeg环境的配置 下载annie之前需要先配置ffmpeg视频解码器。 网址下载地址 https://ffmpeg.org/download.html1、在网址中选择window版本 2、点击后选择该版本 3、下载完成后对压缩包进行解压&#xff0c;后进行环境的配置 &#xff08;1&#xff09;压缩包解压&#…...

SAP GR(Group Reporting)配置篇(七)

1.7、合并处理的配置 1.7.1 定义方法 菜单路径 组报表的SAP S4HANA >合并处理的配置>定义方法 事务代码 SPI4...

共建智能软件开发联合实验室,怿星科技助力东风柳汽加速智能化技术创新

11月14日&#xff0c;以“奋进70载&#xff0c;智创新纪元”为主题的2024东风柳汽第二届科技周在柳州盛大开幕&#xff0c;吸引了来自全国的汽车行业嘉宾、技术专家齐聚一堂&#xff0c;共襄盛举&#xff0c;一同探寻如何凭借 “新技术、新实力” 这一关键契机&#xff0c;为新…...

优化表单交互:在 el-select 组件中嵌入表格显示选项

介绍了一种通过 el-select 插槽实现表格样式数据展示的方案&#xff0c;可更直观地辅助用户选择。支持列配置、行数据绑定及自定义搜索&#xff0c;简洁高效&#xff0c;适用于复杂选择场景。完整代码见GitHub 仓库。 背景 在进行业务开发选择订单时&#xff0c;如果单纯的根…...

每日一题 LCR 079. 子集

LCR 079. 子集 主要应该考虑遍历的顺序 class Solution { public:vector<vector<int>> subsets(vector<int>& nums) {vector<vector<int>> ans;vector<int> temp;dfs(nums,0,temp,ans);return ans;}void dfs(vector<int> &…...

cocos creator 3.8 Node学习 3

//在Ts、js中 this指向当前的这个组件实例 //this下的一个数据成员node&#xff0c;指向组件实例化的这个节点 //同样也可以根据节点找到挂载的所有组件 //this.node 指向当前脚本挂载的节点//子节点与父节点的关系 // Node.parent是一个Node,Node.children是一个Node[] // th…...

微信小程序底部button,小米手机偶现布局错误的bug

预期结果&#xff1a;某button fixed 到页面底部&#xff0c;进入该页面时&#xff0c;正常显示button 实际结果&#xff1a;小米13pro&#xff0c;首次进入页面&#xff0c;button不显示。再次进入时&#xff0c;则正常展示 左侧为小米手机第一次进入。 遇到bug的解决思路&am…...

【计组】复习题

冯诺依曼型计算机的主要设计思想是什么&#xff1f;它包括哪些主要组成部分&#xff1f; 主要设计思想&#xff1a; ①采用二进制表示数据和指令&#xff0c;指令由操作码和地址码组成。 ②存储程序&#xff0c;程序控制&#xff1a;将程序和数据存放在存储器中&#xff0c;计算…...

Apache Maven 标准文件目录布局

Apache Maven 采用了一套标准的目录布局来组织项目文件。这种布局提供了一种结构化和一致的方式来管理项目资源&#xff0c;使得开发者更容易导航和维护项目。理解和使用标准目录布局对于有效的Maven项目管理至关重要。本文将探讨Maven标准目录布局的关键组成部分&#xff0c;并…...

Android 功耗分析(底层篇)

最近在网上发现关于功耗分析系列的文章很少&#xff0c;介绍详细的更少&#xff0c;于是便想记录总结一下功耗分析的相关知识&#xff0c;有不对的地方希望大家多指出&#xff0c;互相学习。本系列分为底层篇和上层篇。 大概从基础知识&#xff0c;测试手法&#xff0c;以及案例…...

【Xbim+C#】创建圆盘扫掠IfcSweptDiskSolid

基础回顾 https://blog.csdn.net/liqian_ken/article/details/143867404 https://blog.csdn.net/liqian_ken/article/details/114851319 效果图 代码示例 在前文基础上&#xff0c;增加一个工具方法&#xff1a; public static IfcProductDefinitionShape CreateDiskSolidSha…...

IntelliJ+SpringBoot项目实战(四)--快速上手数据库开发

对于新手学习SpringBoot开发&#xff0c;可能最急迫的事情就是尽快掌握数据库的开发。目前数据库开发主要流行使用Mybatis和Mybatis Plus,不过这2个框架对于新手而言需要一定的时间掌握&#xff0c;如果快速上手数据库开发&#xff0c;可以先按照本文介绍的方式使用JdbcTemplat…...

利用oss进行数据库和网站图片备份

1.背景 由于网站迁移到香港云 服务器&#xff0c;虽然便宜&#xff0c;但是宿主服务器时不时重启&#xff0c;为了预防不可控的因素导致网站资料丢失&#xff0c;所以想到用OSS 备份网站数据&#xff0c;bucket选择在香港地区创建&#xff0c;这样和你服务器传输会更快。 oss…...

Excel - VLOOKUP函数将指定列替换为字典值

背景&#xff1a;在根据各种复杂的口径导出报表数据时&#xff0c;因为关联的表较多、数据量较大&#xff0c;一行数据往往会存在三个以上的字典数据。 为了保证导出数据的效率&#xff0c;博主选择了导出字典code值后&#xff0c;在Excel中处理匹配字典值。在查询百度之后&am…...

实验室管理平台:Spring Boot技术构建

3系统分析 3.1可行性分析 通过对本实验室管理系统实行的目的初步调查和分析&#xff0c;提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本实验室管理系统采用SSM框架&#xff0c;JAVA作为开发语言&a…...

操作系统进程和线程——针对实习面试

目录 操作系统进程和线程什么是进程和线程&#xff1f;进程和线程的区别&#xff1f;进程有哪些状态&#xff1f;什么是线程安全&#xff1f;如何实现线程安全&#xff1f;什么是线程安全&#xff1f;如何实现线程安全&#xff1f; 进程间的通信有哪几种方式&#xff1f;什么是…...

使用 cnpm 安装 Electron,才是正确快速的方法

当然&#xff0c;下面是总结的几种安装 Electron 的方法&#xff0c;包括使用 npm 和 cnpm&#xff0c;以及一些常见的问题解决技巧。 ### 1. 使用 npm 安装 Electron #### 步骤 1: 初始化项目 在你的项目目录中初始化一个新的 Node.js 项目&#xff1a; bash npm init -y …...

【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南

文章目录 PyTorch 全面解析2.1 PyTorch 的发展历程2.2 PyTorch 的核心特点2.3 PyTorch 的应用场景 TensorFlow 全面解析3.1 TensorFlow 的发展历程3.2 TensorFlow 的核心特点3.3 TensorFlow 的应用场景 Keras 全面解析4.1 Keras 的发展历程4.2 Keras 的核心特点4.3 Keras 的应用…...