当前位置: 首页 > news >正文

算法.图论-习题全集(Updating)

文章目录

  • 本节设置的意义
  • 并查集篇
    • 并查集简介以及常见技巧
    • 并查集板子(洛谷)
    • 情侣牵手问题
    • 相似的字符串组
    • 岛屿数量(并查集做法)
    • 省份数量
    • 移除最多的同行或同列石头
    • 最大的人工岛
    • 找出知晓秘密的所有专家
  • 建图及其拓扑排序篇
    • 链式前向星建图板子
    • 课程表

本节设置的意义

主要就是为了复习图论算法, 尝试从题目解析的角度,更深入的理解图论算法…

并查集篇

并查集简介以及常见技巧

并查集是一种用于大集团查找, 合并等操作的数据结构, 常见的方法有

  • find: 用来查找元素在大集团中的代表元素(这里使用的是扁平化的处理)
  • isSameSet: 用来查找两个元素是不是一个大集团的(其实就是find的应用)
  • union: 用来合并两大集团的元素

关于并查集打标签的技巧, 其实我们之前的size数组也是一种打标签的逻辑, 其实打标签就是给每一个集团的代表节点打上标签即可, 还有我们在并查集的题目中通常会设置一个sets作为集合的总数目(每次合并–), 这是一个常见的技巧, 并查集的细节我们在这里不进行过多的介绍, 在之前的章节中有细致的描述…

并查集板子(洛谷)

这里我们的并查集的板子使用的是洛谷的板子(小挂大的优化都没必要其实)

// 并查集模版(洛谷)
// 本实现用递归函数实现路径压缩,而且省掉了小挂大的优化,一般情况下可以省略
// 测试链接 : https://www.luogu.com.cn/problem/P3367import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;public class Main{public static int MAXN = 10001;public static int[] father = new int[MAXN];public static int n;public static void build() {for (int i = 0; i <= n; i++) {father[i] = i;}}public static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}public static boolean isSameSet(int x, int y) {return find(x) == find(y);}public static void union(int x, int y) {father[find(x)] = find(y);}public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {n = (int) in.nval;build();in.nextToken();int m = (int) in.nval;for (int i = 0; i < m; i++) {in.nextToken();int z = (int) in.nval;in.nextToken();int x = (int) in.nval;in.nextToken();int y = (int) in.nval;if (z == 1) {union(x, y);} else {out.println(isSameSet(x, y) ? "Y" : "N");}}}out.flush();out.close();br.close();}}

情侣牵手问题

在这里插入图片描述
本题的突破点就是如果一个大集团里面有 n 对情侣, 那么我们至少要交换 n - 1次(通过把情侣进行编号)

// 这次我们尝试使用轻量版的并查集来解决这道题
class Solution {private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static int sets = 0;private static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {int fa = find(a);int fb = find(b);if (fa != fb) {father[fa] = fb;sets--;}}// 初始化并查集private static void build(int n) {for (int i = 0; i < n; i++) {father[i] = i;}sets = n;}public int minSwapsCouples(int[] row) {build(row.length / 2);for (int i = 0; i < row.length; i += 2) {int n1 = row[i] / 2;int n2 = row[i + 1] / 2;union(n1, n2);}return row.length / 2 - sets;}
}

相似的字符串组

在这里插入图片描述
其实就是枚举每一个位置, 然后判断是不是一组的就OK了

// 还是使用一下轻量级的并查集板子
class Solution {private static final int MAX_SZ = 301;private static final int[] father = new int[MAX_SZ];private static int sets = 0;private static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {int fa = find(a);int fb = find(b);if (fa != fb) {father[fa] = fb;sets--;}}// 初始化并查集private static void build(int n) {for (int i = 0; i < n; i++) {father[i] = i;}sets = n;}public int numSimilarGroups(String[] strs) {build(strs.length);// 主流程的时间复杂度是 O(n ^ 2), 遍历strs的每一个位置int m = strs[0].length();for (int i = 0; i < strs.length; i++) {for (int j = i + 1; j < strs.length; j++) {// 获取到两个字符串, 然后计算两个字符串的不同字符数量String s1 = strs[i];String s2 = strs[j];int diff = 0;for (int k = 0; k < m && diff < 3; k++) {if (s1.charAt(k) != s2.charAt(k))diff++;}if (diff == 0 || diff == 2)union(i, j);}}return sets;}
}

岛屿数量(并查集做法)

在这里插入图片描述
这道题的解法非常多, 比如多源 BFS , 洪水填充(其实就是递归加回溯) , 还有今天介绍的并查集的方法(这个方法不是最好的)

// 这个题的并查集做法只要注意一点就可以了: 把一个二维下标转化为一维下标
class Solution {private static final int MAX_SZ = 301 * 301;private static final int[] father = new int[MAX_SZ];private static int sets = 0;private static int row = 0;private static int col = 0;// 模拟bfs的move数组private static final int[] move = { -1, 0, 1, 0, -1 };private static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {int fa = find(a);int fb = find(b);if (fa != fb) {father[fa] = fb;sets--;}}private static void build(char[][] grid, int rl, int cl) {row = rl;col = cl;sets = 0;for (int i = 0; i < row; i++) {for (int j = 0; j < col; j++) {if (grid[i][j] == '1') {sets++;father[getIndex(i, j)] = getIndex(i, j);}}}}public int numIslands(char[][] grid) {// 初始化并查集并统计 '1' 的数量build(grid, grid.length, grid[0].length);// 遍历grid进行合并for (int i = 0; i < row; i++) {for (int j = 0; j < col; j++) {// 向四个方向扩展if (grid[i][j] == '1') {for (int k = 0; k < 4; k++) {int nx = i + move[k];int ny = j + move[k + 1];if (nx >= 0 && nx < row && ny >= 0 && ny < col && grid[nx][ny] == '1') {union(getIndex(i, j), getIndex(nx, ny));}}}}}return sets;}// 二维下标转一维下标private static int getIndex(int i, int j) {return i * col + j;}
}

省份数量

在这里插入图片描述
没什么可说的, 就是一个简单的并查集的思路

class Solution {// 这其实也是一个并查集的题private static final int MAXM = 201;private static final int[] father = new int[MAXM];private static final int[] size = new int[MAXM];private static int sets = 0;private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){if(!isSameSet(a, b)){int fa = find(a);int fb = find(b);if(size[fa] > size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}sets--;}}private static void build(int n){for(int i = 0; i < n; i++){father[i] = i;size[i] = 1;}sets = n;}public int findCircleNum(int[][] isConnected) {// 初始化并查集build(isConnected.length);for(int i = 0; i < isConnected.length; i++){int[] info = isConnected[i];for(int j = 0; j < info.length; j++){if(info[j] == 1){union(i, j);}}}return sets;}
}

移除最多的同行或同列石头

在这里插入图片描述
其实就是每一个集团最后都会被消成一个元素, 我们中间用哈希表加了一些关于离散化的处理的技巧

// 使用一下轻量版本的并查集加上哈希表进行离散化的操作
class Solution {private static Map<Integer, Integer> rowFirst = new HashMap<>();private static Map<Integer, Integer> colFirst = new HashMap<>();private static final int MAXM = 1001;private static final int[] father = new int[MAXM];private static int sets = 0;private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){father[fa] = fb;sets--;}}// 初始化并查集private static void build(int n){for(int i = 0; i < n; i++){father[i] = i;}sets = n;}public int removeStones(int[][] stones) {// 清空哈希表rowFirst.clear();colFirst.clear();// 初始化并查集build(stones.length);for(int i = 0; i < stones.length; i++){int row = stones[i][0];int col = stones[i][1];if(!rowFirst.containsKey(row)){rowFirst.put(row, i);}else{union(rowFirst.get(row), i);}if(!colFirst.containsKey(col)){colFirst.put(col, i);}else{union(colFirst.get(col), i);}}return stones.length - sets;}}

最大的人工岛

在这里插入图片描述
本题注意的点就是, 首先我们二维的矩阵, 想要使用并查集, 需要先把二维的坐标转化为一维的坐标, 然后通过一维的坐标使用并查集, 首先把所有的岛进行合并, 然后来到一个 空位置 , 就尝试向四个方向进行扩展尝试进行岛屿的链接, 最后返回最大的连成一片的岛屿数量即可

/*** 本题我们是采用的并查集(轻量板子)的方法来做*  核心点就是首先使用 并查集 (二维下标转换一维下标) 进行人工岛的合并*  本题需要我们使用size的辅助信息, 因为 size 也相当于打标签的技巧*  然后枚举每一个位置进行岛屿的合并*/
class Solution {private static final int MAX_LEN = 501;private static final int MAX_SIZE = MAX_LEN * MAX_LEN;private static final int[] father = new int[MAX_SIZE];private static final int[] size = new int[MAX_SIZE];private static int len = 0;private static final int[] move = {-1, 0, 1, 0, -1};private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){if(!isSameSet(a, b)){int fa = find(a);int fb = find(b);if(size[fa] > size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}// 初始化并查集private static void build(int[][] grid){len = grid.length;for(int i = 0; i < len; i++){for(int j = 0; j < len; j++){if(grid[i][j] == 1){int index = getIndex(i, j);father[index] = index;size[index] = 1;}}}}// 二维下标转换为一维下标private static int getIndex(int i, int j){return i * len + j;}public int largestIsland(int[][] grid) {build(grid);int res = 0;// 遍历矩阵进行合并for(int i = 0; i < len; i++){for(int j = 0; j < len; j++){if(grid[i][j] == 1){// 此时向四周进行扩展合并for(int k = 0; k < 4; k++){int nx = i + move[k];int ny = j + move[k + 1];if(nx >= 0 && nx < len && ny >= 0 && ny < len && grid[nx][ny] == 1){union(getIndex(i, j), getIndex(nx, ny));}}   // 尝试进行人工岛最大面积的更新res = Math.max(res, size[find(getIndex(i, j))]);}}}// 遍历所有的 0 位置, 尝试向四周进行枚举更新最大值// 创建一个map用来进行去重Set<Integer> set = new HashSet<>();for(int i = 0; i < len; i++){for(int j = 0; j < len; j++){if(grid[i][j] == 0){set.clear();int tempRes = 1;// 向四周进行扩展然后尝试进行岛屿链接for(int k = 0; k < 4; k++){int nx = i + move[k];int ny = j + move[k + 1];if(nx >= 0 && nx < len && ny >= 0 && ny < len && grid[nx][ny] == 1){int f = find(getIndex(nx, ny));if(!set.contains(f)){tempRes += size[f];set.add(f);}}}res = Math.max(res, tempRes); }}}return res;}
}

找出知晓秘密的所有专家

在这里插入图片描述
本题我们运用的是一种打标签的技巧, 还有就是注意的是并查集如何进行拆解, 其实就是修改一下father数组的内容, 然后把size数组的值置为1即可

/*** 本题主要就是涉及到并查集的打标签的技巧, 还有如何拆散一个并查集* 首先就是关于并查集打标签: 其实就是给集团领袖节点打上标签信息(类似size数组)* 关于拆散并查集: 其实就是把father数组重新设置为自身, size置为1(如果有的话)*/class Solution {// 并查集轻量化的板子private static final int MAXN = 100001;private static final int[] father = new int[MAXN];private static final boolean[] knowSecrets = new boolean[MAXN];private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){if(!isSameSet(a, b)){father[find(a)] = find(b);}}// 初始化并查集private static void build(int n, int firstPerson){for(int i = 0; i < n; i++){father[i] = i;knowSecrets[i] = false;}// 初始化知道秘密的集团(只需要给领袖节点打上标签就好了)union(0, firstPerson);knowSecrets[0] = true;knowSecrets[firstPerson] = true;}public List<Integer> findAllPeople(int n, int[][] meetings, int firstPerson) {// 首先初始化并查集build(n, firstPerson);// 把meetings进行排序便于处理Arrays.sort(meetings, (a, b) -> a[2] - b[2]);int l = 0;int r = 0;while(l < meetings.length){// 首先把r指针置为l的位置r = l;int tempL = l;// 向右侧扩充(结束的时候r指向的下一个不同的元素的边界位置)while(r < meetings.length && meetings[r][2] == meetings[l][2]){r++;}// 先便利一边并查集进行集合元素的合并while(l < r){union(meetings[l][0], meetings[l][1]);if(isSameSet(0, meetings[l][0])) knowSecrets[meetings[l][0]] = true;if(isSameSet(0, meetings[l][1])) knowSecrets[meetings[l][1]] = true;l++;}// 再次便利一边这个时间点的元素进行集合的拆解l = tempL;while(l < r){if(!isSameSet(meetings[l][0], 0) && !isSameSet(meetings[l][1], 0)){father[meetings[l][0]] = meetings[l][0];father[meetings[l][1]] = meetings[l][1];}l++;}l = r;}// 进行元素的收集List<Integer> res = new ArrayList<>();for(int i = 0; i < n; i++){if(isSameSet(0, i)){res.add(i);}}return res;}
}

建图及其拓扑排序篇

建图的方法有三种, 邻接表, 邻接矩阵, 以及链式前向星, 我们更推荐的是静态空间的链式前向星的建图法, 下面是链式前向星的板子

链式前向星建图板子

/*** 关于大厂笔试以及比赛中的建图方式的测试, 其实就是使用静态的数组空间进行建图* 我们设置 3 / 4 / 5 个静态数组空间* head数组(存储点对应的头边编号), next数组(边对应下一条边的编号), to数组(边去往的点), weight数组(边对应的权值), indegree数组(点对应的入度)* 关于拓扑排序(topoSort), 我们最常用的方法其实就是零入度删除法(使用队列, 必要的时候使用小根堆), 关于是否环化的判断我们使用计数器实现* 下面是我们提供的链式建图的板子, 以及拓扑排序的板子*/public class createGraphByLinkedProStar{// 设置点的最大数量private static final int MAXN = 10001;// 设置边的最大数量private static final int MAXM = 10001;// head数组private static final int[] head = new int[MAXN];// next数组private static final int[] next = new int[MAXM];// to数组private static final int[] to = new int[MAXM];// weight数组private static final int[] weight = new int[MAXM];// indegree数组(统计入度)private static final int[] indegree = new int[MAXN];// cnt统计边的数量private static int cnt = 1;// 添加边的方法(顺便统计入度)private static void addEdge(int u, int v, int w){next[cnt] = head[u];to[cnt] = v;weight[cnt] = w;head[u] = cnt++;indegree[v]++;}// 初始化静态空间(只需要清空head以及indegree数组)然后建图(这里是有向带权图)private static void build(int n, int[][] edges){cnt = 1;for(int i = 0; i <= n; i++){indegree[i] = 0;head[i] = 0;}for(int[] edge : edges){addEdge(edge[0], edge[1], edge[2]);}}// 拓扑排序(topoSort的板子)private static int[] topoSort(int n){// 首先创建一个队列(将来可以作为结果返回)int[] queue = new int[n];int l = 0;int r = 0;// 遍历入度表, 添加所有0入度的点进队列for(int i = 0; i < n; i++){if(indegree[i] == 0){queue[r++] = i;}}// 利用链式前向星的遍历开始跑拓扑排序int elemCnt = 0;while(l < r){int cur = queue[l++];elemCnt++;for(int ei = head[cur]; ei != 0; ei = next[ei]){if(--indegree[to[ei]] == 0){queue[r++] = to[ei];}}}return elemCnt == n ? queue : new int[0];}}

课程表

标准的使用拓扑排序的板子 + 加上链式前向星建图法直接打败 100 %

在这里插入图片描述

class Solution {// 设置点的最大数量private static final int MAXN = 10001;// 设置边的最大数量private static final int MAXM = 10001;// head数组private static final int[] head = new int[MAXN];// next数组private static final int[] next = new int[MAXM];// to数组private static final int[] to = new int[MAXM];// indegree数组(统计入度)private static final int[] indegree = new int[MAXN];// cnt统计边的数量private static int cnt = 1;// 添加边的方法(顺便统计入度)private static void addEdge(int u, int v){next[cnt] = head[u];to[cnt] = v;head[u] = cnt++;indegree[v]++;}// 初始化静态空间(只需要清空head以及indegree数组)然后建图(这里是有向带权图)private static void build(int n, int[][] edges){cnt = 1;for(int i = 0; i <= n; i++){indegree[i] = 0;head[i] = 0;}for(int[] edge : edges){addEdge(edge[1], edge[0]);}}// 拓扑排序(topoSort的板子)private static int[] topoSort(int n){// 首先创建一个队列(将来可以作为结果返回)int[] queue = new int[n];int l = 0;int r = 0;// 遍历入度表, 添加所有0入度的点进队列for(int i = 0; i < n; i++){if(indegree[i] == 0){queue[r++] = i;}}// 利用链式前向星的遍历开始跑拓扑排序int elemCnt = 0;while(l < r){int cur = queue[l++];elemCnt++;for(int ei = head[cur]; ei != 0; ei = next[ei]){if(--indegree[to[ei]] == 0){queue[r++] = to[ei];}}}return elemCnt == n ? queue : new int[0];}public int[] findOrder(int numCourses, int[][] prerequisites) {build(numCourses, prerequisites);return topoSort(numCourses);}
}

相关文章:

算法.图论-习题全集(Updating)

文章目录 本节设置的意义并查集篇并查集简介以及常见技巧并查集板子(洛谷)情侣牵手问题相似的字符串组岛屿数量(并查集做法)省份数量移除最多的同行或同列石头最大的人工岛找出知晓秘密的所有专家 建图及其拓扑排序篇链式前向星建图板子课程表 本节设置的意义 主要就是为了复习…...

this.$prompt 限制输入长度

this.$prompt(请输入关键词名称, 提示, {confirmButtonText: 确定,cancelButtonText: 取消,inputPattern: /^\d{0,50}$/,inputErrorMessage: 关键词名称长度不能超过50个字符 }).then(({ value }) > {})...

JDBC使用p6spy记录实际执行SQL方法【解决SQL打印两次问题】

p6spy介绍 p6spy 是一个开源的 JDBC 数据源代理工具&#xff0c;主要用于拦截和记录应用程序与数据库之间的所有 SQL 操作&#xff0c;方便开发者进行 SQL 调试、性能监控和问题排查。 p6spy可以打印实际执行的sql&#xff0c;在开发过程中方便调试&#xff0c;和使用框架无关…...

问题: redis-高并发场景下如何保证缓存数据与数据库的最终一致性

在高并发场景下&#xff0c;Redis 通常用作缓存层&#xff0c;与数据库结合使用以提高系统的性能。为了保证缓存数据与数据库的最终一致性&#xff0c;通常采用的有双写机制、缓存失效机制&#xff0c;基于双写机制、缓存失效机制又衍生出来了消息队列、事件驱动架构等 常见机…...

Stable Diffusion核心网络结构——CLIP Text Encoder

&#x1f33a;系列文章推荐&#x1f33a; 扩散模型系列文章正在持续的更新&#xff0c;更新节奏如下&#xff0c;先更新SD模型讲解&#xff0c;再更新相关的微调方法文章&#xff0c;敬请期待&#xff01;&#xff01;&#xff01;&#xff08;本文及其之前的文章均已更新&…...

C语言-11-18笔记

1.C语言数据类型 类型存储大小值范围char1 字节-128 到 127 或 0 到 255unsigned char1 字节0 到 255signed char1 字节-128 到 127int2 或 4 字节-32,768 到 32,767 或 -2,147,483,648 到 2,147,483,647unsigned int2 或 4 字节0 到 65,535 或 0 到 4,294,967,295short2 字节…...

数据结构_图的遍历

深度优先搜索遍历 遍历思想 邻接矩阵上的遍历算法 void Map::DFSTraverse() {int i, v;for (i 0; i < MaxLen; i){visited[i] false;}for (i 0; i < Vexnum; i){// 如果顶点未访问&#xff0c;则进行深度优先搜索if (visited[i] false){DFS(i);}}cout << endl…...

设计LRU缓存

LRU缓存 LRU缓存的实现思路LRU缓存的操作C11 STL实现LRU缓存自行设计双向链表 哈希表 LRU&#xff08;Least Recently Used&#xff0c;最近最少使用&#xff09;缓存是一种常见的缓存淘汰算法&#xff0c;其基本思想是&#xff1a;当缓存空间已满时&#xff0c;移除最近最少使…...

python中的base64使用小笑话

在使用base64的时候将本地的图片转换为base64 代码如下&#xff0c;代码绝对正确 import base64 def image_to_data_uri(image_path):with open(image_path, rb) as image_file:image_data base64.b64encode(image_file.read()).decode(utf-8)file_extension image_path.sp…...

Python之time时间库

time时间库 概述获取当前时间time库datetime库区别 时间元组处理获取时间元组的各个部分时间戳和时间元组的转换 格式化时间格式化时间解析时间格式符号说明 暂停程序计时操作简单计时高精度计时计时器类的实现 UTC时间操作time库datetime库 概述 time是Python标准库中的一个模…...

Easyexcel(4-模板文件)

相关文章链接 Easyexcel&#xff08;1-注解使用&#xff09;Easyexcel&#xff08;2-文件读取&#xff09;Easyexcel&#xff08;3-文件导出&#xff09;Easyexcel&#xff08;4-模板文件&#xff09; 文件导出 获取 resources 目录下的文件&#xff0c;使用 withTemplate 获…...

国产linux系统(银河麒麟,统信uos)使用 PageOffice 动态生成word文件

PageOffice 国产版 &#xff1a;支持信创系统&#xff0c;支持银河麒麟V10和统信UOS&#xff0c;支持X86&#xff08;intel、兆芯、海光等&#xff09;、ARM&#xff08;飞腾、鲲鹏、麒麟等&#xff09;、龙芯&#xff08;LoogArch&#xff09;芯片架构。 数据区域填充文本 数…...

Window11+annie 视频下载器安装

一、ffmpeg环境的配置 下载annie之前需要先配置ffmpeg视频解码器。 网址下载地址 https://ffmpeg.org/download.html1、在网址中选择window版本 2、点击后选择该版本 3、下载完成后对压缩包进行解压&#xff0c;后进行环境的配置 &#xff08;1&#xff09;压缩包解压&#…...

SAP GR(Group Reporting)配置篇(七)

1.7、合并处理的配置 1.7.1 定义方法 菜单路径 组报表的SAP S4HANA >合并处理的配置>定义方法 事务代码 SPI4...

共建智能软件开发联合实验室,怿星科技助力东风柳汽加速智能化技术创新

11月14日&#xff0c;以“奋进70载&#xff0c;智创新纪元”为主题的2024东风柳汽第二届科技周在柳州盛大开幕&#xff0c;吸引了来自全国的汽车行业嘉宾、技术专家齐聚一堂&#xff0c;共襄盛举&#xff0c;一同探寻如何凭借 “新技术、新实力” 这一关键契机&#xff0c;为新…...

优化表单交互:在 el-select 组件中嵌入表格显示选项

介绍了一种通过 el-select 插槽实现表格样式数据展示的方案&#xff0c;可更直观地辅助用户选择。支持列配置、行数据绑定及自定义搜索&#xff0c;简洁高效&#xff0c;适用于复杂选择场景。完整代码见GitHub 仓库。 背景 在进行业务开发选择订单时&#xff0c;如果单纯的根…...

每日一题 LCR 079. 子集

LCR 079. 子集 主要应该考虑遍历的顺序 class Solution { public:vector<vector<int>> subsets(vector<int>& nums) {vector<vector<int>> ans;vector<int> temp;dfs(nums,0,temp,ans);return ans;}void dfs(vector<int> &…...

cocos creator 3.8 Node学习 3

//在Ts、js中 this指向当前的这个组件实例 //this下的一个数据成员node&#xff0c;指向组件实例化的这个节点 //同样也可以根据节点找到挂载的所有组件 //this.node 指向当前脚本挂载的节点//子节点与父节点的关系 // Node.parent是一个Node,Node.children是一个Node[] // th…...

微信小程序底部button,小米手机偶现布局错误的bug

预期结果&#xff1a;某button fixed 到页面底部&#xff0c;进入该页面时&#xff0c;正常显示button 实际结果&#xff1a;小米13pro&#xff0c;首次进入页面&#xff0c;button不显示。再次进入时&#xff0c;则正常展示 左侧为小米手机第一次进入。 遇到bug的解决思路&am…...

【计组】复习题

冯诺依曼型计算机的主要设计思想是什么&#xff1f;它包括哪些主要组成部分&#xff1f; 主要设计思想&#xff1a; ①采用二进制表示数据和指令&#xff0c;指令由操作码和地址码组成。 ②存储程序&#xff0c;程序控制&#xff1a;将程序和数据存放在存储器中&#xff0c;计算…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...