C++11特性(详解)
目录
1.C++11简介
2.列表初始化
3.声明
1.auto
2.decltype
3.nullptr
4.范围for循环
5.智能指针
6.STL的一些变化
7.右值引用和移动语义
1.左值引用和右值引用
2.左值引用和右值引用的比较
3.右值引用的使用场景和意义
4.右值引用引用左值及其一些更深入的使用场景分析
5.完美转发
8.类的新功能
9.可变模板参数
10.lambda表达式
1.lambda表达式
2.lambda表达式语法
3.捕获列表说明
4.函数对象与lambda表达式
11.包装器
12.线程库
1.thread类的简单介绍
2.线程函数参数
3.原子性操作库(atomic)
4.lock_guard与unique_lock
1.mutex的种类
2.lock_guard
3.unique_lock
5.支持两个线程交替打印,一个打印奇数,一个打印偶数
1.C++11简介
在2003年C++标准委员会曾经提交了一份技术勘误表(简称TC1),使得C++03这个名字已经取代了 C++98称为C++11之前的最新C++标准名称。不过由于C++03(TC1)主要是对C++98标准中的漏洞进行修复,语言的核心部分则没有改动,因此人们习惯性的把两个标准合并称为C++98/03标准
从C++0x到C++11,C++标准10年磨一剑,第二个真正意义上的标准珊珊来迟。相比于 C++98/03,C++11则带来了数量可观的变化,其中包含了约140个新特性,以及对C++03标准中 约600个缺陷的修正,这使得C++11更像是从C++98/03中孕育出的一种新语言。相比较而言, C++11能更好地用于系统开发和库开发、语法更加泛华和简单化、更加稳定和安全,不仅功能更 强大,而且能提升程序员的开发效率,公司实际项目开发中也用得比较多,所以我们要作为一个 重点去学习。C++11增加的语法特性非常篇幅非常多,我们这里没办法一 一讲解,所以主要讲解实际中比较实用的语法
C++11文档
2.列表初始化
1.{ }初始化
在C++98中,标准允许使用花括号{}对数组或者结构体元素进行统一的列表初始值设定
struct Point
{int _x;int _y;
};int main()
{int array1[] = { 1, 2, 3, 4, 5 };int array2[5] = { 0 };Point p = { 1, 2 };return 0;
}
C++11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可用于所有的内置类型和用户自 定义的类型,使用初始化列表时,可添加等号(=),也可不添加
struct Point
{int _x;int _y;
};int main()
{int x1 = 1;int x2{ 2 };int array1[]{ 1, 2, 3, 4, 5 };int array2[5]{ 0 };Point p{ 1, 2 };// C++11中列表初始化也可以适用于new表达式中int* pa = new int[4]{ 0 };return 0;
}
创建对象时也可以使用列表初始化方式调用构造函数初始化
class Date
{
public:Date(int year, int month, int day):_year(year),_month(month),_day(day){cout << "Date(int year, int month, int day)" << endl;}
private:int _year;int _month;int _day;
};int main()
{Date d1(2022, 1, 1); // old style// C++11支持的列表初始化,这里会调用构造函数初始化Date d2{ 2022, 1, 2 };Date d3 = { 2022, 1, 3 };return 0;
}
2.initializer_list
initializer_list的文档说明
std::initializer_list是什么类型
int main()
{// the type of il is an initializer_list auto il = { 10, 20, 30 };cout << typeid(il).name() << endl;return 0;
}
std::initializer_list使用场景:
std::initializer_list一般是作为构造函数的参数,C++11对STL中的不少容器就增加 std::initializer_list作为参数的构造函数,这样初始化容器对象就更方便了。也可以作为operator= 的参数,这样就可以用大括号赋值
3.声明
1.auto
在C++98中auto是一个存储类型的说明符,表明变量是局部自动存储类型,但是局部域中定义局 部的变量默认就是自动存储类型,所以auto就没什么价值了。C++11中废弃auto原来的用法,将其用于实现自动类型推断。这样要求必须进行显示初始化,让编译器将定义对象的类型设置为初 始化值的类型
int main()
{int i = 10;auto p = &i;auto pf = strcpy;cout << typeid(p).name() << endl;cout << typeid(pf).name() << endl;map<string, string> dict = { {"sort", "排序"}, {"insert", "插入"} };//map<string, string>::iterator it = dict.begin();auto it = dict.begin();return 0;
}
2.decltype
关键字decltype将变量的类型声明为表达式指定的类型
// decltype的一些使用使用场景
template<class T1, class T2>
void F(T1 t1, T2 t2)
{decltype(t1 * t2) ret;cout << typeid(ret).name() << endl;
}int main()
{const int x = 1;double y = 2.2;decltype(x * y) ret; // ret的类型是doubledecltype(&x) p; // p的类型是int*cout << typeid(ret).name() << endl;cout << typeid(p).name() << endl;F(1, 'a');return 0;
}
3.nullptr
由于C++中NULL被定义成字面量0,这样就可能回带来一些问题,因为0既能指针常量,又能表示 整形常量。所以出于清晰和安全的角度考虑,C++11中新增了nullptr,用于表示空指针
4.范围for循环
范围for循环在STL的容器中已经详细讲解,在这里不做过多的解释
5.智能指针
智能指针在后续会专门讲解,在这里先不做解释
6.STL的一些变化
圈出的便是新增的容器
容器中的一些新方法
如果我们再细细去看会发现基本每个容器中都增加了一些C++11的方法,但是其实很多都是用得 比较少的。 比如提供了cbegin和cend方法返回const迭代器等等,但是实际意义不大,因为begin和end也是 可以返回const迭代器的
实际上C++11更新后,容器中增加的新方法最后用的插入接口函数的右值引用版本
但是这些接口到底意义在哪?网上都说他们能提高效率,他们是如何提高效率的?
在下面的右值引用会对其进行讲解
7.右值引用和移动语义
1.左值引用和右值引用
传统的C++语法中就有引用的语法,而C++11中新增了的右值引用语法特性,所以从现在开始我们 之前学习的引用就叫做左值引用。无论左值引用还是右值引用,都是给对象取别名
什么是左值?什么是左值引用?
左值是一个表示数据的表达式(如变量名或解引用的指针),我们可以获取它的地址+可以对它赋 值,左值可以出现赋值符号的左边,右值不能出现在赋值符号左边。定义时const修饰符后的左 值,不能给他赋值,但是可以取它的地址。左值引用就是给左值的引用,给左值取别名
int main()
{// 以下的p、b、c、*p都是左值int* p = new int(0);int b = 1;const int c = 2;// 以下几个是对上面左值的左值引用int*& rp = p;int& rb = b;const int& rc = c;int& pvalue = *p;return 0;
}
什么是右值?什么是右值引用?
右值也是一个表示数据的表达式,如:字面常量、表达式返回值,函数返回值(这个不能是左值引用返回)等等,右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边,右值不能取地址。右值引用就是对右值的引用,给右值取别名
int main()
{double x = 1.1, y = 2.2;// 以下几个都是常见的右值10;x + y;fmin(x, y);// 以下几个都是对右值的右值引用int&& rr1 = 10;double&& rr2 = x + y;double&& rr3 = fmin(x, y);// 这里编译会报错:error C2106: “=”: 左操作数必须为左值10 = 1;x + y = 1;fmin(x, y) = 1;return 0;
}
需要注意的是右值是不能取地址的,但是给右值取别名后,会导致右值被存储到特定位置,且可以取到该位置的地址,也就是说例如:不能取字面量10的地址,但是rr1引用后,可以对rr1取地 址,也可以修改rr1。如果不想rr1被修改,可以用const int&& rr1 去引用,是不是感觉很神奇, 这个了解一下实际中右值引用的使用场景并不在于此,这个特性也不重要
int main()
{double x = 1.1, y = 2.2;int&& rr1 = 10;const double&& rr2 = x + y;rr1 = 20;rr2 = 5.5; // 报错return 0;
}
2.左值引用和右值引用的比较
左值引用总结:
- 左值引用只能引用左值,不能引用右值
- 但是const左值引用既可引用左值,也可引用右值
int main()
{// 左值引用只能引用左值,不能引用右值。int a = 10;int& ra1 = a; // ra为a的别名//int& ra2 = 10; // 编译失败,因为10是右值// const左值引用既可引用左值,也可引用右值。const int& ra3 = 10;const int& ra4 = a;return 0;
}
右值引用总结:
- 右值引用只能右值,不能引用左值
- 但是右值引用可以move以后的左值
int main()
{// 右值引用只能右值,不能引用左值。int&& r1 = 10;// error C2440: “初始化”: 无法从“int”转换为“int &&”// message : 无法将左值绑定到右值引用int a = 10;int&& r2 = a;// 右值引用可以引用move以后的左值int&& r3 = std::move(a);return 0;
}
3.右值引用的使用场景和意义
前面我们可以看到左值引用既可以引用左值和又可以引用右值,那为什么C++11还要提出右值引用呢?是不是化蛇添足呢?下面我们来看看左值引用的短板,右值引用是如何补齐这个短板的
namespace bit
{class string{public:typedef char* iterator;iterator begin() {return _str;}iterator end(){return _str + _size;}string(const char* str = ""):_size(strlen(str)), _capacity(_size){//cout << "string(char* str)" << endl;_str = new char[_capacity + 1];strcpy(_str, str);}// s1.swap(s2)void swap(string& s){::swap(_str, s._str);::swap(_size, s._size);::swap(_capacity, s._capacity);}// 拷贝构造string(const string& s):_str(nullptr){cout << "string(const string& s) -- 深拷贝" << endl;string tmp(s._str);swap(tmp);}// 赋值重载string& operator=(const string& s){ cout << "string& operator=(string s) -- 深拷贝" << endl;string tmp(s);swap(tmp);return *this;}// 移动构造string(string&& s):_str(nullptr),_size(0),_capacity(0){cout << "string(string&& s) -- 移动语义" << endl;swap(s);}// 移动赋值string& operator=(string&& s){cout << "string& operator=(string&& s) -- 移动语义" << endl;swap(s);return *this;}~string(){delete[] _str;_str = nullptr;}char& operator[](size_t pos){assert(pos < _size);return _str[pos];}void reserve(size_t n){if (n > _capacity){char* tmp = new char[n + 1];strcpy(tmp, _str);delete[] _str;_str = tmp;_capacity = n;}}void push_back(char ch){if (_size >= _capacity){size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2;reserve(newcapacity);}_str[_size] = ch;++_size;_str[_size] = '\0';}//string operator+=(char ch)string& operator+=(char ch){push_back(ch);return *this;}const char* c_str() const{return _str;}private:char* _str;size_t _size;size_t _capacity; // 不包含最后做标识的\0};
}
左值引用的场景
做参数和做返回值都可以提高效率
void func1(bit::string s)
{}void func2(const bit::string& s)
{}int main()
{bit::string s1("hello world");// func1和func2的调用我们可以看到左值引用做参数减少了拷贝,提高效率的使用场景和价值func1(s1);func2(s1);// string operator+=(char ch) 传值返回存在深拷贝// string& operator+=(char ch) 传左值引用没有拷贝提高了效率s1 += '!';return 0;
}
左值引用的短板
但是当函数返回对象是一个局部变量,出了函数作用域就不存在了,就不能使用左值引用返回, 只能传值返回。例如:bit::string to_string(int value)函数中可以看到,这里只能使用传值返回, 传值返回会导致至少1次拷贝构造(如果是一些旧一点的编译器可能是两次拷贝构造)
namespace bit
{bit::string to_string(int value){bool flag = true;if (value < 0){flag = false;value = 0 - value;}bit::string str;while (value > 0){int x = value % 10;value /= 10;str += ('0' + x);}if (flag == false){str += '-';}std::reverse(str.begin(), str.end());return str;}
}int main()
{bit::string ret1 = bit::to_string(1234);bit::string ret2 = bit::to_string(-1234);return 0;
}
右值引用和移动语义解决上述问题:
在bit::string中增加移动构造,移动构造本质是将参数右值的资源窃取过来,占位已有,那么就不用做深拷贝了,所以它叫做移动构造,就是窃取别人的资源来构造自己
在bit::string中增加移动构造,移动构造本质是将参数右值的资源窃取过来,占位已有,那么就不用做深拷贝了,所以它叫做移动构造,就是窃取别人的资源来构造自己
// 移动构造
string(string&& s):_str(nullptr),_size(0),_capacity(0)
{cout << "string(string&& s) -- 移动语义" << endl;swap(s);
}int main()
{bit::string ret2 = bit::to_string(-1234);return 0;
}
再运行上面bit::to_string的两个调用,我们会发现,这里没有调用深拷贝的拷贝构造,而是调用 了移动构造,移动构造中没有新开空间,拷贝数据,所以效率提高了
不仅仅有移动构造,还有移动赋值
在bit::string类中增加移动赋值函数,再去调用bit::to_string(1234),不过这次是将 bit::to_string(1234)返回的右值对象赋值给ret1对象,这时调用的是移动构造
// 移动赋值
string& operator=(string&& s)
{cout << "string& operator=(string&& s) -- 移动语义" << endl;swap(s);return *this;
}int main()
{bit::string ret1;ret1 = bit::to_string(1234);return 0;
}
这里运行后,我们看到调用了一次移动构造和一次移动赋值。因为如果是用一个已经存在的对象 接收,编译器就没办法优化了。bit::to_string函数中会先用str生成构造生成一个临时对象,但是 我们可以看到,编译器很聪明的在这里把str识别成了右值,调用了移动构造。然后在把这个临时 对象做为bit::to_string函数调用的返回值赋值给ret1,这里调用的移动赋值
4.右值引用引用左值及其一些更深入的使用场景分析
按照语法,右值引用只能引用右值,但右值引用一定不能引用左值吗?因为:有些场景下,可能 真的需要用右值去引用左值实现移动语义。当需要用右值引用引用一个左值时,可以通过move 函数将左值转化为右值。C++11中,std::move()函数位于头文件中,该函数名字具有迷惑性, 它并不搬移任何东西,唯一的功能就是将一个左值强制转化为右值引用,然后实现移动语义
template<class _Ty>
inline typename remove_reference<_Ty>::type&& move(_Ty&& _Arg) _NOEXCEPT
{// forward _Arg as movablereturn ((typename remove_reference<_Ty>::type&&)_Arg);
}int main()
{bit::string s1("hello world");// 这里s1是左值,调用的是拷贝构造bit::string s2(s1);// 这里我们把s1 move处理以后, 会被当成右值,调用移动构造// 但是这里要注意,一般是不要这样用的,因为我们会发现s1的// 资源被转移给了s3,s1被置空了。bit::string s3(std::move(s1));return 0;
}
STL容器插入接口函数也增加了右值引用版本
5.完美转发
模板中的&& 万能引用
void Fun(int &x){ cout << "左值引用" << endl; }
void Fun(const int &x){ cout << "const 左值引用" << endl; }void Fun(int &&x){ cout << "右值引用" << endl; }
void Fun(const int &&x){ cout << "const 右值引用" << endl; }
// 模板中的&&不代表右值引用,而是万能引用,其既能接收左值又能接收右值。
// 模板的万能引用只是提供了能够接收同时接收左值引用和右值引用的能力,
// 但是引用类型的唯一作用就是限制了接收的类型,后续使用中都退化成了左值,
// 我们希望能够在传递过程中保持它的左值或者右值的属性, 就需要用我们下面学习的完美转发template<typename T>
void PerfectForward(T&& t)
{Fun(t);
}int main()
{PerfectForward(10); // 右值int a;PerfectForward(a); // 左值PerfectForward(std::move(a)); // 右值const int b = 8;PerfectForward(b); // const 左值PerfectForward(std::move(b)); // const 右值return 0;
}
std::forward 完美转发在传参的过程中保留对象原生类型属性
void Fun(int &x){ cout << "左值引用" << endl; }
void Fun(const int &x){ cout << "const 左值引用" << endl; }
void Fun(int &&x){ cout << "右值引用" << endl; }
void Fun(const int &&x){ cout << "const 右值引用" << endl; }
// std::forward<T>(t)在传参的过程中保持了t的原生类型属性。
template<typename T>
void PerfectForward(T&& t)
{Fun(std::forward<T>(t));
}int main()
{PerfectForward(10); // 右值int a;PerfectForward(a); // 左值PerfectForward(std::move(a)); // 右值const int b = 8;PerfectForward(b); // const 左值PerfectForward(std::move(b)); // const 右值return 0;
}
8.类的新功能
默认成员函数
原来C++类中,有6个默认成员函数:
- 构造函数
- 析构函数
- 拷贝构造函数
- 拷贝赋值重载
- 取地址重载
- const 取地址重载
C++11 新增了两个:移动构造函数和移动赋值运算符重载
针对移动构造函数和移动赋值运算符重载有一些需要注意的点如下:
- 如果你没有自己实现移动构造函数,且没有实现析构函数 、拷贝构造、拷贝赋值重载中的任 意一个。那么编译器会自动生成一个默认移动构造。默认生成的移动构造函数,对于内置类 型成员会执行逐成员按字节拷贝,自定义类型成员,则需要看这个成员是否实现移动构造, 如果实现了就调用移动构造,没有实现就调用拷贝构造
- 如果你没有自己实现移动赋值重载函数,且没有实现析构函数 、拷贝构造、拷贝赋值重载中 的任意一个,那么编译器会自动生成一个默认移动赋值。默认生成的移动构造函数,对于内 置类型成员会执行逐成员按字节拷贝,自定义类型成员,则需要看这个成员是否实现移动赋 值,如果实现了就调用移动赋值,没有实现就调用拷贝赋值。(默认移动赋值跟上面移动构造 完全类似)
- 如果你提供了移动构造或者移动赋值,编译器不会自动提供拷贝构造和拷贝赋值
强制生成默认函数的关键字default:
C++11可以让你更好的控制要使用的默认函数。假设你要使用某个默认的函数,但是因为一些原 因这个函数没有默认生成。比如:我们提供了拷贝构造,就不会生成移动构造了,那么我们可以使用default关键字显示指定移动构造生成
Person(Person&& p) = default;
禁止生成默认函数的关键字delete:
如果能想要限制某些默认函数的生成,在C++98中,是该函数设置成private,并且只声明,这样只要其他人想要调用就会报错。在C++11中更简单,只需在该函数声明加上=delete即可,该语法指示编译器不生成对应函数的默认版本,称=delete修饰的函数为删除函数
Person(const Person& p) = delete;
继承和多态中的final与override关键字
多态和继承中已经讲解,在此不做解释
9.可变模板参数
C++11的新特性可变参数模板能够让您创建可以接受可变参数的函数模板和类模板,相比 C++98/03,类模版和函数模版中只能含固定数量的模版参数,可变模版参数无疑是一个巨大的改 进。然而由于可变模版参数比较抽象,使用起来需要一定的技巧,所以这块还是比较晦涩的。现 阶段呢,我们掌握一些基础的可变参数模板特性就够我们用了
下面就是一个基本可变参数的函数模板
// Args是一个模板参数包,args是一个函数形参参数包
// 声明一个参数包Args...args,这个参数包中可以包含0到任意个模板参数。
template <class ...Args>
void ShowList(Args... args)
{}
上面的参数args前面有省略号,所以它就是一个可变模版参数,我们把带省略号的参数称为“参数包”,它里面包含了0到N(N>=0)个模版参数。我们无法直接获取参数包args中的每个参数的, 只能通过展开参数包的方式来获取参数包中的每个参数,这是使用可变模版参数的一个主要特点,也是最大的难点,即如何展开可变模版参数。由于语法不支持使用args[i]这样方式获取可变 参数,所以我们的用一些奇招来一一获取参数包的值
递归函数方式展开参数包
// 递归终止函数
template <class T>
void ShowList(const T& t)
{cout << t << endl;
}// 展开函数
template <class T, class ...Args>
void ShowList(T value, Args... args)
{cout << value <<" ";ShowList(args...);
}int main()
{ShowList(1);ShowList(1, 'A');ShowList(1, 'A', std::string("sort"));return 0;
}
逗号表达式展开参数包
这种展开参数包的方式,不需要通过递归终止函数,是直接在expand函数体中展开的, printarg不是一个递归终止函数,只是一个处理参数包中每一个参数的函数。这种就地展开参数包的方式实现的关键是逗号表达式。我们知道逗号表达式会按顺序执行逗号前面的表达式
expand函数中的逗号表达式:(printarg(args), 0),也是按照这个执行顺序,先执行 printarg(args),再得到逗号表达式的结果0。同时还用到了C++11的另外一个特性——初始化列 表,通过初始化列表来初始化一个变长数组, {(printarg(args), 0)...}将会展开成((printarg(arg1),0), (printarg(arg2),0), (printarg(arg3),0), etc... ),最终会创建一个元素值都为0的数组int arr[sizeof... (Args)]。由于是逗号表达式,在创建数组的过程中会先执行逗号表达式前面的部分printarg(args) 打印出参数,也就是说在构造int数组的过程中就将参数包展开了,这个数组的目的纯粹是为了在数组构造的过程展开参数包
template <class T>
void PrintArg(T t)
{cout << t << " ";
}//展开函数
template <class ...Args>
void ShowList(Args... args)
{int arr[] = { (PrintArg(args), 0)... };cout << endl;
}int main()
{ShowList(1);ShowList(1, 'A');ShowList(1, 'A', std::string("sort"));return 0;
}
10.lambda表达式
在C++98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法
#include <algorithm>
#include <functional>
int main()
{int array[] = {4,1,8,5,3,7,0,9,2,6};// 默认按照小于比较,排出来结果是升序std::sort(array, array+sizeof(array)/sizeof(array[0]));// 如果需要降序,需要改变元素的比较规则std::sort(array, array + sizeof(array) / sizeof(array[0]), greater<int>());return 0;
}
如果待排序元素为自定义类型,需要用户定义排序时的比较规则:
struct Goods
{string _name; // 名字double _price; // 价格int _evaluate; // 评价Goods(const char* str, double price, int evaluate):_name(str), _price(price),_evaluate(evaluate){}
};struct ComparePriceLess
{bool operator()(const Goods& gl, const Goods& gr){return gl._price < gr._price;}
};struct ComparePriceGreater
{bool operator()(const Goods& gl, const Goods& gr){return gl._price > gr._price;}
};
随着C++语法的发展,人们开始觉得上面的写法太复杂了,每次为了实现一个algorithm算法, 都要重新去写一个类,如果每次比较的逻辑不一样,还要去实现多个类,特别是相同类的命名, 这些都给编程者带来了极大的不便。因此,在C++11语法中出现了Lambda表达式
1.lambda表达式
sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
{return g1._price < g2._price;
});sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
{return g1._price > g2._price;
});sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
{return g1._evaluate < g2._evaluate;
});sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
{return g1._evaluate > g2._evaluate;
});
上述代码就是使用C++11中的lambda表达式来解决,可以看出lambda表达式实际是一个匿名函数
2.lambda表达式语法
lambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement }
- [capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来 判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda 函数使用
- (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略
- mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)
- ->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推 导
- {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量
注意: 在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为 空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情
int main()
{// 最简单的lambda表达式, 该lambda表达式没有任何意义[]{}; // 省略参数列表和返回值类型,返回值类型由编译器推导为intint a = 3, b = 4;[=]{return a + 3; }; // 省略了返回值类型,无返回值类型auto fun1 = [&](int c){b = a + c; }; fun1(10)cout<<a<<" "<<b<<endl;// 各部分都很完善的lambda函数auto fun2 = [=, &b](int c)->int{return b += a+ c; }; cout<<fun2(10)<<endl;// 复制捕捉xint x = 10;auto add_x = [x](int a) mutable { x *= 2; return a + x; }; cout << add_x(10) << endl; return 0;
}
3.捕获列表说明
捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用
- [var]:表示值传递方式捕捉变量var
- [=]:表示值传递方式捕获所有父作用域中的变量(包括this)
- [&var]:表示引用传递捕捉变量var
- [&]:表示引用传递捕捉所有父作用域中的变量(包括this)
- [this]:表示值传递方式捕捉当前的this指针
注意:
- 父作用域指包含lambda函数的语句块
- 语法上捕捉列表可由多个捕捉项组成,并以逗号分割.[=, &a, &b],以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量
- 捕捉列表不允许变量重复传递,否则就会导致编译错误,[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复
- 在块作用域以外的lambda函数捕捉列表必须为空
- 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者非局部变量都
- lambda表达式之间不能相互赋值,即使看起来类型相同
4.函数对象与lambda表达式
函数对象,又称为仿函数,即可以想函数一样使用的对象,就是在类中重载了operator()运算符的 类对象
class Rate
{public:Rate(double rate): _rate(rate){}double operator()(double money, int year){ return money * _rate * year;}private:double _rate;
};int main()
{// 函数对象double rate = 0.49;Rate r1(rate);r1(10000, 2);// lamberauto r2 = [=](double monty, int year)->double{return monty*rate*year;};r2(10000, 2);return 0;
}
从使用方式上来看,函数对象与lambda表达式完全一样
函数对象将rate作为其成员变量,在定义对象时给出初始值即可,lambda表达式通过捕获列表可以直接将该变量捕获到
实际在底层编译器对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的,即:如果定义了一个lambda表达式,编译器会自动生成一个类,在该类中重载了operator()
11.包装器
function包装器
function包装器 也叫作适配器。C++中的function本质是一个类模板,也是一个包装器
bind
std::bind函数定义在头文件中,是一个函数模板,它就像一个函数包装器(适配器),接受一个可调用对象(callable object),生成一个新的可调用对象来“适应”原对象的参数列表。一般而 言,我们用它可以把一个原本接收N个参数的函数fn,通过绑定一些参数,返回一个接收M个(M 可以大于N,但这么做没什么意义)参数的新函数。同时,使用std::bind函数还可以实现参数顺 序调整等操作
// 原型如下:
template <class Fn, class... Args>
/* unspecified */ bind (Fn&& fn, Args&&... args);
// with return type (2)
template <class Ret, class Fn, class... Args>
/* unspecified */ bind (Fn&& fn, Args&&... args);
可以将bind函数看作是一个通用的函数适配器,它接受一个可调用对象,生成一个新的可调用对 象来“适应”原对象的参数列表
调用bind的一般形式:auto newCallable = bind(callable,arg_list);
其中,newCallable本身是一个可调用对象,arg_list是一个逗号分隔的参数列表,对应给定的callable的参数。当我们调用newCallable时,newCallable会调用callable,并传给它arg_list中 的参数
arg_list中的参数可能包含形如_n的名字,其中n是一个整数,这些参数是“占位符”,表示 newCallable的参数,它们占据了传递给newCallable的参数的“位置”。数值n表示生成的可调用对 象中参数的位置:_1为newCallable的第一个参数,_2为第二个参数,以此类推
12.线程库
1.thread类的简单介绍
在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接 口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在 并行编程时不需要依赖第三方库,而且在原子操作中还引入了原子类的概念。要使用标准库中的线程,必须包含< thread >头文件
线程类
注意:
- 线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的 状态
- 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程
#include <thread>
int main()
{std::thread t1;cout << t1.get_id() << endl;return 0;
}
get_id()的返回值类型为id类型,id类型实际为std::thread命名空间下封装的一个类,该类中 包含了一个结构体:
typedef struct
{ /* thread identifier for Win32 */void *_Hnd; /* Win32 HANDLE */unsigned int _Id;
} _Thrd_imp_t;
3.当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。 线程函数一般情况下可按照以下三种方式提供:
- 函数指针
- lambda表达式
- 函数对象
#include <iostream>
using namespace std;
#include <thread>
void ThreadFunc(int a)
{cout << "Thread1" << a << endl;
}class TF
{public:void operator()(){cout << "Thread3" << endl;}
};int main()
{// 线程函数为函数指针thread t1(ThreadFunc, 10);// 线程函数为lambda表达式thread t2([]{cout << "Thread2" << endl; });// 线程函数为函数对象TF tf;thread t3(tf);t1.join();t2.join();t3.join();cout << "Main thread!" << endl;return 0;
}
4.thread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值,即将一个 线程对象关联线程的状态转移给其他线程对象,转移期间不意向线程的执行
5.可以通过jionable()函数判断线程是否是有效的,如果是以下任意情况,则线程无效
- 采用无参构造函数构造的线程对象
- 线程对象的状态已经转移给其他线程对象
- 线程已经调用jion或者detach结束
2.线程函数参数
线程函数的参数是以值拷贝的方式拷贝到线程栈空间中的,因此:即使线程参数为引用类型,在线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是外部实参
#include <thread>
void ThreadFunc1(int& x)
{x += 10;
}void ThreadFunc2(int* x)
{*x += 10;
}int main()
{int a = 10;// 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式,但其实际
引用的是线程栈中的拷贝thread t1(ThreadFunc1, a);t1.join();cout << a << endl;// 如果想要通过形参改变外部实参时,必须借助std::ref()函数thread t2(ThreadFunc1, std::ref(a);t2.join();cout << a << endl;// 地址的拷贝thread t3(ThreadFunc2, &a);t3.join();cout << a << endl;return 0;
}
注意:如果是类成员函数作为线程参数时,必须将this作为线程函数参数
3.原子性操作库(atomic)
多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数 据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦,比如:
#include <iostream>
using namespace std;
#include <thread>
unsigned long sum = 0L;
void fun(size_t num)
{for (size_t i = 0; i < num; ++i)sum++;
}int main()
{cout << "Before joining,sum = " << sum << std::endl;thread t1(fun, 10000000);thread t2(fun, 10000000);t1.join();t2.join();cout << "After joining,sum = " << sum << std::endl;return 0;
}
C++98中传统的解决方式:可以对共享修改的数据可以加锁保护
#include <iostream>
using namespace std;
#include <thread>
#include <mutex>
std::mutex m;
unsigned long sum = 0L;void fun(size_t num)
{for (size_t i = 0; i < num; ++i){m.lock();sum++;m.unlock();}
}int main()
{cout << "Before joining,sum = " << sum << std::endl;thread t1(fun, 10000000);thread t2(fun, 10000000);t1.join();t2.join();cout << "After joining,sum = " << sum << std::endl;return 0;
}
虽然加锁可以解决,但是加锁有一个缺陷就是:只要一个线程在对sum++时,其他线程就会被阻 塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁
因此C++11中引入了原子操作。所谓原子操作:即不可被中断的一个或一系列操作,C++11引入 的原子操作类型,使得线程间数据的同步变得非常高效
#include <iostream>
using namespace std;
#include <thread>
#include <atomic>
atomic_long sum{ 0 };
void fun(size_t num)
{for (size_t i = 0; i < num; ++i)sum ++; // 原子操作
}int main()
{cout << "Before joining, sum = " << sum << std::endl;thread t1(fun, 1000000);thread t2(fun, 1000000);t1.join();t2.join();cout << "After joining, sum = " << sum << std::endl;return 0;
}
在C++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥的访问
更为普遍的,程序员可以使用atomic类模板,定义出需要的任意原子类型
atmoic<T> t; // 声明一个类型为T的原子类型变量t
注意:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此在C++11 中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及operator=等,为了防止意外,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算 符重载默认删除掉了
4.lock_guard与unique_lock
在多线程环境下,如果想要保证某个变量的安全性,只要将其设置成对应的原子类型即可,即高效又不容易出现死锁问题。但是有些情况下,我们可能需要保证一段代码的安全性,那么就只能通过锁的方式来进行控制
比如:一个线程对变量number进行加一100次,另外一个减一100次,每次操作加一或者减一之 后,输出number的结果,要求:number最后的值为1
#include <thread>
#include <mutex>
int number = 0;
mutex g_lock;int ThreadProc1()
{for (int i = 0; i < 100; i++){g_lock.lock();++number;cout << "thread 1 :" << number << endl;g_lock.unlock();}return 0;
}int ThreadProc2()
{for (int i = 0; i < 100; i++){g_lock.lock();--number;cout << "thread 2 :" << number << endl;g_lock.unlock();}return 0;
}int main()
{thread t1(ThreadProc1);thread t2(ThreadProc2);t1.join();t2.join();cout << "number:" << number << endl;system("pause");return 0;
}
上述代码的缺陷:锁控制不好时,可能会造成死锁,最常见的比如在锁中间代码返回,或者在锁 的范围内抛异常。因此:C++11采用RAII的方式对锁进行了封装,即lock_guard和unique_lock
1.mutex的种类
在C++11中,Mutex总共包了四个互斥量的种类:
1. std::mutex
C++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能进行移动。mutex最常用 的三个函数:
注意,线程函数调用lock()时,可能会发生以下三种情况:
- 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前, 该线程一直拥有该锁
- 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住
- 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
线程函数调用try_lock()时,可能会发生以下三种情况:
- 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量
- 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉
- 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
2.std::recursive_mutex
其允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权, 释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),除此之外, std::recursive_mutex的特性和 std::mutex 大致相同
3. std::timed_mutex
比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until()
try_lock_for()
接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与 std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回 false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false
try_lock_until()
接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住, 如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false
2.lock_guard
std::lock_gurad 是 C++11 中定义的模板类。定义如下:
template<class _Mutex>
class lock_guard
{public:// 在构造lock_gard时,_Mtx还没有被上锁explicit lock_guard(_Mutex& _Mtx): _MyMutex(_Mtx){_MyMutex.lock();}// 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁lock_guard(_Mutex& _Mtx, adopt_lock_t): _MyMutex(_Mtx){}~lock_guard() _NOEXCEPT{_MyMutex.unlock();}lock_guard(const lock_guard&) = delete;lock_guard& operator=(const lock_guard&) = delete;private:_Mutex& _MyMutex;
};
通过上述代码可以看到,lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行了封装,在需要加锁的地方,只需要用上述介绍的任意互斥体实例化一个lock_guard,调用构造函数 成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁 问题
lock_guard的缺陷:太单一,用户没有办法对该锁进行控制,因此C++11又提供了 unique_lock
3.unique_lock
与lock_gard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动 (move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的 unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。使用以上类型互斥量实例化 unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解 锁,可以很方便的防止死锁问题
与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数:
- 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock
- 修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)
- 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相 同)、mutex(返回当前unique_lock所管理的互斥量的指针)
5.支持两个线程交替打印,一个打印奇数,一个打印偶数
#include <thread>
#include <mutex>
#include <condition_variable>void two_thread_print()
{std::mutex mtx;condition_variable c;int n = 100;bool flag = true;thread t1([&](){int i = 0;while (i < n){unique_lock<mutex> lock(mtx);c.wait(lock, [&]()->bool{return flag; });cout << i << endl;flag = false;i += 2; // 偶数c.notify_one();}});thread t2([&](){int j = 1;while (j < n){unique_lock<mutex> lock(mtx);c.wait(lock, [&]()->bool{return !flag; });cout << j << endl;j += 2; // 奇数flag = true;c.notify_one();}});t1.join();t2.join();
}int main()
{two_thread_print();return 0;
}
相关文章:
C++11特性(详解)
目录 1.C11简介 2.列表初始化 3.声明 1.auto 2.decltype 3.nullptr 4.范围for循环 5.智能指针 6.STL的一些变化 7.右值引用和移动语义 1.左值引用和右值引用 2.左值引用和右值引用的比较 3.右值引用的使用场景和意义 4.右值引用引用左值及其一些更深入的使用场景分…...
基于Springboot的心灵治愈交流平台系统的设计与实现
基于Springboot的心灵治愈交流平台系统 介绍 基于Springboot的心灵治愈交流平台系统,后端框架使用Springboot和mybatis,前端框架使用Vuehrml,数据库使用mysql,使用B/S架构实现前台用户系统和后台管理员系统,和不同级别…...
初识java(2)
大家好,今天我们来讲讲java中的数据类型。 java跟我们的c语言的数据类型有一些差别,那么接下来我们就来看看。 一.字面常量,其中:199,3.14,‘a’,true都是常量将其称为字面常量。(…...
AIGC--AIGC与人机协作:新的创作模式
AIGC与人机协作:新的创作模式 引言 人工智能生成内容(AIGC)正在以惊人的速度渗透到创作的各个领域。从生成文本、音乐、到图像和视频,AIGC使得创作过程变得更加快捷和高效。然而,AIGC并非完全取代了人类的创作角色&am…...
Wonder3D本地部署到算家云搭建详细教程
Wonder3D简介 Wonder3D仅需2至3分钟即可从单视图图像中重建出高度详细的纹理网格。Wonder3D首先通过跨域扩散模型生成一致的多视图法线图与相应的彩色图像,然后利用一种新颖的法线融合方法实现快速且高质量的重建。 本文详细介绍了在算家云搭建Wonder3D的流程以及…...
【设计模式】【行为型模式(Behavioral Patterns)】之状态模式(State Pattern)
1. 设计模式原理说明 状态模式(State Pattern) 是一种行为设计模式,它允许对象在其内部状态发生变化时改变其行为。这个模式的核心思想是使用不同的类来表示不同的状态,每个状态类都封装了与该状态相关的特定行为。当对象的状态发…...
QML学习 —— 34、视频媒体播放器(附源码)
效果 说明 您可以单独使用MediaPlayer播放音频内容(如音频),也可以将其与VideoOutput结合使用以渲染视频。VideoOutput项支持未转换、拉伸和均匀缩放的视频演示。有关拉伸均匀缩放演示文稿的描述,请参见fillMode属性描述。 播放可能出错问题 出现的问题: DirectS…...
【深度学习|特征增强模块】FFN(前馈神经网络)和E_FFN(增强型前馈神经网络)是transformer特征增强的重要组成部分!
【深度学习|特征增强模块】FFN(前馈神经网络)和E_FFN(增强型前馈神经网络)是transformer特征增强的重要组成部分! 【深度学习|特征增强模块】FFN(前馈神经网络)和E_FFN(增强型前馈神…...
【Qt】控件7
1.QTextEdit的简单使用 使用简单的QTextEdit,获取到的内容显示到标签上 使用textChanged信号 在槽函数中需要获取QTextEdit的内容,对应操作是: QString curorui->textEdit->toPlainText();然后显示到标签上,对应操作是: …...
F12抓包14_修改网页图片网页保存到本地
课程大纲 1、修改网页图片(2种方式二选一) 修改网页图片,需要定位到图片标签,修改<img>标签的属性。2种方法: 1. 修改为网络图片url。缺点:url失效,图片无法显示。 2. 修改为图片base64&a…...
源代码检测,内附实际案例
源代码安全审计是依据国标GB/T 34944-2017、GB/T 34944-2017,结合专业源代码扫描工具对各种程序语言编写的源代码进行安全审计。能够为客户提供包括安全编码规范咨询、源代码安全现状评测、定位源代码中存在的安全漏洞、分析漏洞风险、给出修改建议等一系列服务。 源…...
1138:将字符串中的小写字母转换成大写字母
【题目描述】 给定一个字符串,将其中所有的小写字母转换成大写字母。 【输入】 输入一行,包含一个字符串(长度不超过100,可能包含空格)。 【输出】 输出转换后的字符串。 【输入样例】 helloworld123Ha 【输出样例】…...
《C++ 人工智能模型邂逅云平台:集成之路的策略与要点全解析》
在当今数字化浪潮汹涌澎湃的时代,人工智能无疑是引领技术变革的核心力量。而 C以其卓越的性能和高效的资源利用,成为开发人工智能模型的有力武器。与此同时,云平台所提供的强大计算能力、灵活的存储资源以及便捷的服务部署,为人工…...
【ArcGISPro】Sentinel-2数据处理
错误 默认拉进去只组织了4个波段,但是实际有12个波段 解决方案 数据下载 Sentinel-2 数据下载-CSDN博客 数据处理 数据查看 创建镶嵌数据集 在数据管理工具箱中找到创建镶嵌数据集...
Unity中的简易TCP服务器/客户端
在本文中,我将向你介绍一个在Unity中实现的简单TCP服务器脚本,和一个简单的客户端脚本. 脚本 MyTcpServer 允许Unity应用创建一个TCP服务器,监听客户端的连接、异步处理客户端消息,并通过事件与Unity应用中的其他模块进行通信。 MyTcpServe…...
Spring Boot 3.4 正式发布,结构化日志!
1 从 Spring Boot 3.3 升级到 3.4 1.1 RestClient 和 RestTemplate 新增对 RestClient 和 RestTemplate 自动配置的支持,可用 Reactor Netty 的 HttpClient 或 JDK 的 HttpClient。支持的客户端优先级: Apache HTTP Components (HttpComponentsClient…...
技术文档,they are my collection!
工作 今天这篇文章,献给一直撰写技术文档的自己。我自认为是公司中最爱写文档的人了,我们是一个不到40人的小公司,公司作风没有多么严谨,领导也不会要求我们写技术文档。但是从入职初至今,我一直保持着写技术文档…...
详解Qt之QtMath Qt数学类
文章目录 QtMath详解前言QtMath简介QtMath中的函数1. 三角函数1.1 qSin1.2 qCos 2. 指数与对数函数2.1 qExp2.2 qLn 3. 幂运算与平方根3.1 qPow3.2 qSqrt QtMath的优势1. 一致性与跨平台支持2. 与Qt生态系统集成3. 简洁性 总结 QtMath详解 前言 在C的开发中,数学运…...
人工智能与人类:共创未来的新篇章
数年前,当人工智能还停留在实验室的时候,很少有人能想到它会如此迅速地融入我们的日常生活。如今,从手机上的语音助手,到自动驾驶汽车,从智能家居到医疗诊断,AI的身影无处不在。这让我想起了20世纪初电力普…...
4.6 JMeter HTTP信息头管理器
欢迎大家订阅【软件测试】 专栏,开启你的软件测试学习之旅! 文章目录 前言1 HTTP信息头管理器的位置2 常见的HTTP请求头3 添加 HTTP 信息头管理器4 应用场景 前言 在 JMeter 中,HTTP信息头管理器(HTTP Header Manager)…...
非交换几何与黎曼ζ函数:数学中的一场革命性对话
非交换几何与黎曼ζ函数:数学中的一场革命性对话 非交换几何(Noncommutative Geometry, NCG)是数学的一个分支领域,它将经典的几何概念扩展到非交换代数的框架中。非交换代数是一种结合代数,其中乘积不是交换性的&…...
【设计模式】【行为型模式(Behavioral Patterns)】之观察者模式(Observer Pattern)
1. 设计模式原理说明 观察者模式(Observer Pattern) 是一种行为设计模式,它定义了一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会得到通知并自动更新。这种模式非常适合处理事件驱动系统&a…...
文件导入-使用java反射修改日期数据
文件导入时,时间类型通常不能直接导出,以下方法为批量处理类中日期类型转字符串类型。 Date/Datetime --> String(yyyy-mm-dd)Field[] declaredFields HrAviationstudentMonitorDTO.class.getDeclaredFields(); for (Field field : declaredFields) …...
【网络安全设备系列】10、安全审计系统
0x00 定义: 网络安全审计系统针对互联网行为提供有效的行为审计、内容审计、行为报警、行为控制及相关审计功能。从管理层面提供互联网的 有效监督,预防、制止数据泄密。满足用户对互联网行为审计备案及 安全保护措施的要求,提供完整的上网记录…...
Apache Maven Assembly 插件简介
Apache Maven Assembly 插件是一个强大的工具,允许您以多种格式(如 ZIP、TAR 和 JAR)创建项目的分发包。 该插件特别适用于将项目与其依赖项、配置文件和其他必要资源一起打包。 通过使用 Maven Assembly 插件,您可以将项目作为…...
ReentrantLock(可重入锁) Semaphore(信号量) CountDownLatch
目录 ReentrantLock(可重入锁) &Semaphore(信号量)&CountDownLatchReentrantLock(可重入锁)既然有了synchronized,为啥还要有ReentrantLock?Semaphore(信号量)如何确保线程安全呢?CountDownLatch ReentrantLock(可重入锁) &Semaphore(信号量…...
计算机网络习题解答--个人笔记(未完)
本篇文章为关于《计算机网络-自顶向下方法第七版》的阅读总结和课后习题解答(未完待续) 第二章: cookie:(这里是比较老版本的HTTP,具体HTTPs是怎么实现的不是很清楚)cookie的原理其实很简单。就是在HTTP消息头上又多…...
java虚拟机——频繁发生Full GC的原因有哪些?如何避免发生Full GC
什么是Full GC Full GC(Full Garbage Collection)是Java垃圾收集过程中的一种形式,它涉及整个堆内存(包括年轻代和老年代)以及方法区的垃圾收集。Full GC是一个相对重量级的操作,因为它需要遍历和回收整个…...
python学习笔记(12)算法(5)迭代与递归
一、迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段代码,直到这个条件不再满足。 迭代通常用于解决需要逐步推进的计算问题,例如遍历数组、计算阶乘等。迭代…...
从零开始:Linux 环境下的 C/C++ 编译教程
个人主页:chian-ocean 文章专栏 前言: GCC(GNU Compiler Collection)是一个功能强大的编译器集合,支持多种语言,包括 C 和 C。其中 gcc 用于 C 语言编译,g 专用于 C 编译。 Linux GCC or G的安…...
手机网站如何做/点击器
西安军需工业学校都开设了哪些专业?西安军需工业学校是一所全日制公办院校,这样的办学性质,受到了更多学生和家长的认可,并且学校所开设的相关专业也让更多学生找到了未来的发展方向,那么西安军需工业学校都开设了哪些…...
wordpress论坛社区主题/域名在线查询
五种网络I/O模型 阻塞I/O(Blocking I/O) 非阻塞I/O(Non-blocking I/O) I/O复用(I/O Multiplexing) 信号驱动式I/O(Singnal driven I/O) 异步I/O(Asynchronous I/O) Tip:前四种都是同步I/O,只有最后一种才是异步I/O。 同步、异步的概念 同步是指一…...
pexels免费素材网站/长沙做优化的公司
为了在接下来的篇章中讲解用Java实现文件的归档和解归档,需要先了解一下Java中int型与byte型数组之间的相互转换。 首先,我们先来看看int型转换成byte型数组。 我们知道,Java中,一个int型占用4个字节,一个byte型占用…...
网站营销推广方案/网络广告的优势有哪些
本文主要内容:1 ElasticSearch常用的操作2 ElasticSearchbulk命令ES REST APIelasticsearch支持多种通讯,其中包括http请求响应服务,因此通过curl命令,可以发送http请求,并得到json返回内容。常用的REST请求有…...
医院网站可信认证必须做吗/互联网产品推广
最近,跟一个同行朋友小张聊天,他非常苦恼,因为工作不如意,他入职这个企业已经3年了,做的是网络工程师,薪资不高,公司事情还一大堆,还经常被迫背锅,眼看一把年纪了&#x…...
网站建设是属于软件开发费吗/日本网络ip地址域名
随时随地阅读更多技术实战干货,获取项目源码、学习资料,请关注源代码社区公众号(ydmsq666) 布局资源是Android中最常用的一种资源,Android可以将屏幕中组件的布局方式定义在一个XML中,这有点像Web开发中的HTML页面。我们可以调用A…...