当前位置: 首页 > news >正文

【PyTorch】(基础二)---- 张量

张量

在 PyTorch 中,张量(Tensor)是核心数据结构,类似于 NumPy 中的数组,但具有更强的计算能力和对 GPU 的支持。

创建

从列表或数组创建
import torch# 从列表创建
tensor_from_list = torch.tensor([1, 2, 3, 4])
print(tensor_from_list)# 从 NumPy 数组创建
import numpy as np
numpy_array = np.array([1, 2, 3, 4])
tensor_from_numpy = torch.from_numpy(numpy_array)
print(tensor_from_numpy)
随机初始化
# 创建一个形状为 (2, 3) 的随机张量
random_tensor = torch.rand(2, 3)
print(random_tensor)# 创建一个形状为 (2, 3) 的标准正态分布随机张量
normal_tensor = torch.randn(2, 3)
print(normal_tensor)# 创建一个形状为 (2, 3) 的全零张量
zero_tensor = torch.zeros(2, 3)
print(zero_tensor)# 创建一个形状为 (2, 3) 的全一张量
one_tensor = torch.ones(2, 3)
print(one_tensor)
从其他张量创建
# 创建一个与现有张量相同形状和数据类型的张量
tensor_a = torch.tensor([[1, 2], [3, 4]])
tensor_b = torch.zeros_like(tensor_a)
print(tensor_b)# 创建一个与现有张量相同形状但不同数据类型的张量
tensor_c = torch.ones_like(tensor_a, dtype=torch.float)
print(tensor_c)

基本运算

基本操作
# 加法
tensor1 = torch.tensor([1, 2, 3])
tensor2 = torch.tensor([4, 5, 6])
result = tensor1 + tensor2
print(result)# 减法
result = tensor1 - tensor2
print(result)# 乘法
result = tensor1 * tensor2
print(result)# 除法
result = tensor1 / tensor2
print(result)
矩阵操作
# 矩阵乘法
matrix1 = torch.tensor([[1, 2], [3, 4]])
matrix2 = torch.tensor([[5, 6], [7, 8]])
result = torch.matmul(matrix1, matrix2)
print(result)# 点积
vector1 = torch.tensor([1, 2, 3])
vector2 = torch.tensor([4, 5, 6])
result = torch.dot(vector1, vector2)
print(result)
形状操作
# 改变形状
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
reshaped_tensor = tensor.view(3, 2)
print(reshaped_tensor)# 展平
flattened_tensor = tensor.flatten()
print(flattened_tensor)# 增加维度
expanded_tensor = tensor.unsqueeze(0)
print(expanded_tensor)# 删除维度
squeezed_tensor = expanded_tensor.squeeze(0)
print(squeezed_tensor)

特殊之处

从上面给出的一些简单例子可以看出,张量的创建和一些基本操作方法都和ndarray数组类似,但其也有一些特殊的属性和方法。这些属性和方法都是针对于GPU支持和加速张量计算进行的优化

# 查看数据类型
print(tensor.dtype)  # 输出 torch.int64# 查看设备
print(tensor.device)  # 输出 cpu# 显示其梯度信息,方便于计算神经网络的前向传播
print(tensor.grad)
# 把张量迁移到GPU上,利用gpu的并行计算加速计算
if torch.cuda.is_available():device = torch.device("cuda")tensor_gpu = my_tensor.to(device)print("-" * 30)print(tensor_gpu)print(tensor_gpu.device)
else:print("CUDA is not available")

上面输出的设备为device='cuda:0' 表示使用第一个可用的 CUDA 设备(通常是显卡)。如果你有多个 GPU,可以通过改变设备编号来选择不同的 GPU。

我们还可以用三元运算符优化一下设备选择代码

torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

图像格式转换

在进行计算机视觉任务的时候,有时候需要将pytorch和其余的机器视觉库同时使用,通常是利用opencv等工具先进行图像处理,然后将结果转化成tensor类型传递给pytorch,在pytorch执行之后,也可以将tensor类型的数据转换为numpy等类型用于matplotlib进行可视化展示,此处介绍一下tensor类型和Image类型以及Numpy数组类型的相互转化

我们先使用一张示例图

使用opencv读取的图片类型为numpy格式,在虚拟环境中安装opencv的命令为:

pip install opencv-python

接下来读取示例图片并实现其类型的转换

# tensor 和 numpy数组的相互转换
import cv2# opencv读取示例图片
im_cv = cv2.imread('test.jpg')
print("-" * 30)
print(type(im_cv))  # 输出<class 'numpy.ndarray'>
# 因为opencv读取进来的图像按照BGR顺序存储,我们先将其改成RGB模式
im_cv = cv2.cvtColor(im_cv, cv2.COLOR_BGR2RGB)
# 利用torchvision中的transformer模块中的ToTensor类将numpy数组转换成tensor类型
import torchvision
my_totensor = torchvision.transforms.ToTensor()
im_tensor = my_totensor(im_cv)
print(type(im_tensor))  # 输出<class 'torch.Tensor'>
# 为了使用matplotlib,将tensor转换成为numpy数组
import matplotlib.pyplot as plt
im_numpy = im_tensor.numpy()
# 调整维度顺序
im_numpy = np.transpose(im_numpy, (1, 2, 0))
plt.imshow(im_numpy)
plt.axis('off')  # 关闭坐标轴
plt.show()

在计算机视觉中,除了opencv读取的numpy格式之外,使用PIL读取的Image类型也十分常用,其也可以和tensor类型进行转换

# tensor 和 Image数组的相互转换
from PIL import Image
im_pil = Image.open('test.jpg')
print("-" * 30)
print("PIL读取的图片类型为:",type(im_pil))  # 输出<class 'PIL.JpegImagePlugin.JpegImageFile'>
import torchvision
my_totensor = torchvision.transforms.ToTensor()
im_tensor = my_totensor(im_pil)
print(type(im_tensor))  # 输出<class 'torch.Tensor'>
# 将tensor转换成Image并可视化
my_toPIL = torchvision.transforms.ToPILImage()
im_pil = my_toPIL(im_tensor)
Image._show(im_pil)

相关文章:

【PyTorch】(基础二)---- 张量

张量 在 PyTorch 中&#xff0c;张量&#xff08;Tensor&#xff09;是核心数据结构&#xff0c;类似于 NumPy 中的数组&#xff0c;但具有更强的计算能力和对 GPU 的支持。 创建 从列表或数组创建 import torch# 从列表创建 tensor_from_list torch.tensor([1, 2, 3, 4])…...

充满智慧的埃塞俄比亚狼

非洲的青山 随着地球温度上升&#xff0c;贝尔山顶峰的冰川消失殆尽&#xff0c;许多野生动物移居到海拔3000米以上的高原上生活&#xff0c;其中就包括埃塞俄比亚狼。埃塞俄比亚狼是埃塞俄比亚特有的动物&#xff0c;总数不到500只&#xff0c;为“濒危”物种。 埃塞俄比亚狼…...

基于STM32设计的智能桌面暖风机(华为云IOT)

一、前言 1.1 项目开发背景 随着智能家居技术的迅猛发展&#xff0c;传统家用电器正逐步向智能化方向转型。暖风机作为冬季广泛使用的取暖设备&#xff0c;其智能化升级不仅能够提高用户的使用体验&#xff0c;还能通过物联网技术实现远程控制和数据监控&#xff0c;赋予其更…...

零基础学安全--云技术基础

目录 学习连接 前言 云技术历史 云服务 公有云服务商 云分类 基础设施即服务&#xff08;IaaS&#xff09; 平台即服务&#xff08;PaaS&#xff09; 软件即服务&#xff08;SaaS&#xff09; 云架构 虚拟化 容器 云架构设计 组件选择 基础设施即代码 集成部署…...

Spring Boot中配置Flink的资源管理

在 Spring Boot 中配置 Flink 的资源管理&#xff0c;需要遵循以下步骤&#xff1a; 添加 Flink 依赖项 在你的 pom.xml 文件中&#xff0c;添加 Flink 和 Flink-connector-kafka 的依赖项。这里以 Flink 1.14 版本为例&#xff1a; <!-- Flink dependencies --><de…...

51单片机从入门到精通:理论与实践指南入门篇(二)

续51单片机从入门到精通&#xff1a;理论与实践指南&#xff08;一&#xff09;https://blog.csdn.net/speaking_me/article/details/144067372 第一篇总体给大家在&#xff08;全局&#xff09;总体上讲解了一下51单片机&#xff0c;那么接下来几天结束详细讲解&#xff0c;从…...

Notepad++ 替换所有数字给数字加单引号

前言 今天遇到这样一个场景&#xff1a; 要去更新某张表里 code1,2,3,4,5,6 的数据&#xff0c;把它的 name 设置为 ‘张三’ 但是 code在数据库里面的字段类型是 vachar(64)&#xff0c;它自身携带索引 原本可以这样写 SQL: update tableA set namezhangsan where code in …...

【CANOE】【Capl】【RS232】控制串口设备

系列文章目录 内置函数&#xff0c;来控制传统的串口设备&#xff0c;比如继电器等 文章目录 系列文章目录前言一、控制串口二、自定义相关的参数RS232Configure**函数语法****函数功能****参数说明****返回值****示例代码** 三、回调函数的使用RS232OnSend**函数语法****函数…...

查找相关题目

1.顺序查找法适合于存储结构为&#xff08;B &#xff09;的线性表。 A.散列存储 B.顺序存储或链式存储 C.压缩存储 D.索引存储 顺序查找法的特点 2.适用于折半查找的表的存储方式及元素排列要求为(D ) 。 A.链接方式存储&#xff0c;元素无序 B.链接方式存储&#xff0…...

《独立开发:Spring 框架的综合应用》

一、Spring 框架概述 Spring 是一个分层的 Java SE/EE full-stack 轻量级开源框架&#xff0c;以 IoC 和 AOP 为内核&#xff0c;具有方便解耦、方便集成优秀框架、降低 Java EE API 使用难度等优点。 Spring 框架因其强大的功能以及卓越的性能而受到众多开发人员的喜爱。它是…...

数据工程流程

** 数据工程流程图** #mermaid-svg-ArT55xCISSfZImy3 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-ArT55xCISSfZImy3 .error-icon{fill:#552222;}#mermaid-svg-ArT55xCISSfZImy3 .error-text{fill:#552222;stroke…...

Linux宝塔部署wordpress网站更换服务器IP后无法访问管理后台和打开网站页面显示错乱

一、背景&#xff1a; wordpress网站搬家&#xff0c;更换服务器IP后&#xff0c;如果没有域名时&#xff0c;使用服务器IP地址无法访问管理后台和打开网站页面显示错乱。 二、解决方法如下&#xff1a; 1.wordpress搬家后&#xff0c;在新服务器上&#xff0c;新建站点时&am…...

区块链知识体系

1. 区块链基础知识 Q: 什么是区块链&#xff1f; A: 区块链是一种去中心化的分布式账本技术&#xff0c;通过加密算法保证数据的不可篡改性和透明性。它由一系列按时间顺序链接的区块组成&#xff0c;每个区块包含一批交易记录。 Q: 区块链的主要特点是什么&#xff1f; 去…...

力扣第 66 题 “加一”

题目描述 给定一个由 非负整数组成的非空数组&#xff0c;表示一个整数。在该整数的基础上加一。 最高位数字在数组的首位&#xff0c;数组中每个元素只存储单个数字。 你可以假设除了整数 0 之外&#xff0c;这个整数不会以零开头。 示例 1: 输入: digits [1,2,3] 输出:…...

C语言数据结构与算法--简单实现队列的入队和出队

&#xff08;一&#xff09;队列的基本概念 和栈相反&#xff0c;队列(Queue)是一种先进先出&#xff08;First In First Out&#xff09;的线性表。只 允许在表的一端进行插入&#xff0c;而在另一端删除元素&#xff0c;如日常生活中的排队现象。队列中 允许插入的一端叫队尾…...

代码美学:MATLAB制作渐变色

输入颜色个数n&#xff0c;颜色类型&#xff1a; n 2; % 输入颜色个数 colors {[1, 0, 0], [0, 0, 1]}; createGradientHeatmap(n, colors); 调用函数&#xff1a; function createGradientHeatmap(n, colors)% 输入检查if length(colors) ~ nerror(输入的颜色数量与n不一…...

排序算法之冒泡排序篇

冒泡排序的思想&#xff1a; 是一个把元素从小到大排的一个算法思想 相邻的两个元素两两比较&#xff0c;大的那一个元素向后移&#xff0c;小的那个元素向前移 核心逻辑&#xff1a; 比较所有相邻的两个项&#xff0c;如果第一个比第二个大&#xff0c;就交换它们 从头开始…...

WPF ItemsControl控件

ItemsControl 是 WPF 中一个非常灵活的控件&#xff0c;用于显示一组数据项。它是一个基类&#xff0c;许多其他控件&#xff08;如 ListBox, ListView, ComboBox 等&#xff09;都是从 ItemsControl 继承而来。ItemsControl 的主要特点是它可以自定义数据项的显示方式&#xf…...

CentOS 上安装各种应用的命令行总结

在 CentOS 上安装各种应用的命令行方法可以通过不同的软件包管理工具完成&#xff0c;最常用的是 yum&#xff08;CentOS 7及以前版本&#xff09;和 dnf&#xff08;CentOS 8及以上版本&#xff09;。以下是一些常见应用的安装命令总结。 目录 1. 基本的包管理命令 2. 安装…...

Java中的JSONObject详解

文章目录 Java中的JSONObject详解一、引言二、JSONObject的创建与基本操作1、创建JSONObject2、添加键值对3、获取值 三、JSONObject的高级特性1、遍历JSONObject2、从字符串创建JSONObject3、JSONObject与JSONArray的结合使用4、更新和删除键值对 四、错误处理1. 键值存在性检…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...