当前位置: 首页 > news >正文

基于深度学习CNN算法的花卉分类识别系统01--带数据集-pyqt5UI界面-全套源码

文章目录

  • 基于深度学习算法的花卉分类识别系统
  • 一、项目摘要
  • 二、项目运行效果
  • 三、项目文件介绍
  • 四、项目环境配置
    • 1、项目环境库
    • 2、环境配置视频教程
  • 五、项目系统架构
  • 六、项目构建流程
    • 1、数据集
    • 2、算法网络Mobilenet
    • 3、网络模型训练
    • 4、训练好的模型预测
    • 5、UI界面设计-pyqt5
    • 6、项目相关评价指标
  • 七、项目论文报告
  • 八、版权说明及获取方式
    • 1、项目获取方式
    • 2、项目版权说明及定制服务

各位同学大家好,本次给大家分享的项目为:

基于深度学习算法的花卉分类识别系统

一、项目摘要

花卉识别是计算机视觉中的一个重要应用,在园艺、农业和植物保护等领域具有广泛的潜在价值。本文的基于深度学习的花卉识别系统,采用MobileNet模型结合PyTorch框架实现数据集由网络采集的16类花卉图像组成,共计15740张,其中训练集和验证集按8:2的比例划分。为了提高模型的泛化能力,本文对数据进行了多种增强操作,包括随机裁剪、水平翻转及标准化处理

在训练过程中,采用AdamW优化器和交叉熵损失函数,并设置了合适的学习率及超参数,通过100个Epoch进行模型训练和验证。实验结果显示,验证集的最高准确率达到了93%,平均分类准确率为98%。为了用户体验,本文还基于PyQt5设计了用户交互界面,使用户能够便捷地上传图像并查看花卉识别结果以及相关植物信息。

二、项目运行效果

运行效果视频:
https://www.bilibili.com/video/BV1hE22YgEvk

运行效果截图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、项目文件介绍

在这里插入图片描述在这里插入图片描述

四、项目环境配置

1、项目环境库

python=3.8 pytorch pyqt5 opencv matplotlib 等

2、环境配置视频教程

1)anaconda下载安装教程
2)pycharm下载安装教程
3)项目环境库安装步骤教程

五、项目系统架构

在这里插入图片描述
花卉识别系统的整体架构分为四个主要模块:

1. 数据输入模块:负责接收用户输入的花卉图像。

2. 图像预处理模块:对输入的图像进行标准化处理,包括调整图像大小、归一化等,以确保与训练模型的输入要求一致。

3. 深度学习模型模块:通过预训练的MobileNet模型对预处理后的图像进行识别和分类,输出花卉的种类标签。

4. 用户交互模块:通过PyQt5构建图形用户界面,使用户能够便捷地上传图像,查看识别结果,并获得相应的花卉信息。

系统的整体工作流程如下:首先,用户通过用户界面选择要识别的花卉图片,随后系统对图像进行预处理,接着将处理后的图像输入到深度学习模型中进行分类,最后在用户界面上显示识别结果及花卉相关的简介。

六、项目构建流程

1、数据集

数据集文件夹:all_data

在这里插入图片描述

概述:

本文使用的数据集由16类不同花卉的图像组成,总计15740张

在这里插入图片描述

数据集格式及命令统一代码:to_rgb.py
(对数据集中的图像统一成rgb格式并进行统一规范命名)

在这里插入图片描述

2、算法网络Mobilenet

概述:
Mobilenet是专为移动设备和嵌入式系统设计的轻量化卷积神经网络。其主要特点在于采用了深度可分离卷积(Depthwise Separable Convolution)来减少计算量和参数数量,从而在资源受限的环境下实现高效的图像分类和识别。
在这里插入图片描述

算法代码为:models文件夹下的mobilenet.py

在这里插入图片描述

"""mobilenet in pytorch[1] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig AdamMobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applicationshttps://arxiv.org/abs/1704.04861
"""import torch
import torch.nn as nnclass DepthSeperabelConv2d(nn.Module):def __init__(self, input_channels, output_channels, kernel_size, **kwargs):super().__init__()self.depthwise = nn.Sequential(nn.Conv2d(input_channels,input_channels,kernel_size,groups=input_channels,**kwargs),nn.BatchNorm2d(input_channels),nn.ReLU(inplace=True))self.pointwise = nn.Sequential(nn.Conv2d(input_channels, output_channels, 1),nn.BatchNorm2d(output_channels),nn.ReLU(inplace=True))def forward(self, x):x = self.depthwise(x)x = self.pointwise(x)return xclass BasicConv2d(nn.Module):def __init__(self, input_channels, output_channels, kernel_size, **kwargs):super().__init__()self.conv = nn.Conv2d(input_channels, output_channels, kernel_size, **kwargs)self.bn = nn.BatchNorm2d(output_channels)self.relu = nn.ReLU(inplace=True)def forward(self, x):x = self.conv(x)x = self.bn(x)x = self.relu(x)return xclass MobileNet(nn.Module):def __init__(self, width_multiplier=1, class_num=16):super().__init__()alpha = width_multiplierself.stem = nn.Sequential(BasicConv2d(3, int(32 * alpha), 3, padding=1, bias=False),DepthSeperabelConv2d(int(32 * alpha),int(64 * alpha),3,padding=1,bias=False))#downsampleself.conv1 = nn.Sequential(DepthSeperabelConv2d(int(64 * alpha),int(128 * alpha),3,stride=2,padding=1,bias=False),DepthSeperabelConv2d(int(128 * alpha),int(128 * alpha),3,padding=1,bias=False))#downsampleself.conv2 = nn.Sequential(DepthSeperabelConv2d(int(128 * alpha),int(256 * alpha),3,stride=2,padding=1,bias=False),DepthSeperabelConv2d(int(256 * alpha),int(256 * alpha),3,padding=1,bias=False))#downsampleself.conv3 = nn.Sequential(DepthSeperabelConv2d(int(256 * alpha),int(512 * alpha),3,stride=2,padding=1,bias=False),DepthSeperabelConv2d(int(512 * alpha),int(512 * alpha),3,padding=1,bias=False),DepthSeperabelConv2d(int(512 * alpha),int(512 * alpha),3,padding=1,bias=False),DepthSeperabelConv2d(int(512 * alpha),int(512 * alpha),3,padding=1,bias=False),DepthSeperabelConv2d(int(512 * alpha),int(512 * alpha),3,padding=1,bias=False),DepthSeperabelConv2d(int(512 * alpha),int(512 * alpha),3,padding=1,bias=False))#downsampleself.conv4 = nn.Sequential(DepthSeperabelConv2d(int(512 * alpha),int(1024 * alpha),3,stride=2,padding=1,bias=False),DepthSeperabelConv2d(int(1024 * alpha),int(1024 * alpha),3,padding=1,bias=False))self.fc = nn.Linear(int(1024 * alpha), class_num)self.avg = nn.AdaptiveAvgPool2d(1)def forward(self, x):x = self.stem(x)x = self.conv1(x)x = self.conv2(x)x = self.conv3(x)x = self.conv4(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.fc(x)return xdef mobilenet(alpha=1, class_num=16):return MobileNet(alpha, class_num)

3、网络模型训练

训练代码为:train.py

  • 图像尺寸:输入图像大小设置为224×224,以适应MobileNet网络的输入层要求。

  • 批量大小(Batch-size):设置为16,既可以保证模型能够充分学习数据特征,又能在有限的计算资源下保持较高的训练效率。

  • 学习率(Learning Rate):初始学习率设为0.0001,并使用AdamW优化器,该优化器在保持学习率稳定的同时,能够通过权重衰减减少模型过拟合的风险。

  • 损失函数:采用交叉熵损失函数(CrossEntropyLoss),适合多类别分类任务。

  • Epoch设置:训练总共进行100个Epoch,以确保模型能够充分学习到数据特征,并利用早停策略保存最优模型。

在这里插入图片描述

import os
import argparseimport torch
import torch.optim as optim
import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter
from torchvision import transformsfrom my_dataset import MyDataSet
from models.mobilenet import mobilenet as create_model
from utils import read_split_data, train_one_epoch, evaluatedef draw(train, val, ca):plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']plt.rcParams['axes.unicode_minus'] = Falseplt.cla() # 清空之前绘图数据plt.title('精确度曲线图' if ca == "acc" else '损失值曲线图')plt.plot(train, label='train_{}'.format(ca))plt.plot(val, label='val_{}'.format(ca))plt.legend()plt.grid()plt.savefig('精确度曲线图' if ca == "acc" else '损失值曲线图')# plt.show()def main(args):device = torch.device(args.device if torch.cuda.is_available() else "cpu")if os.path.exists("./weights") is False:os.makedirs("./weights")tb_writer = SummaryWriter()train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)img_size = 224data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(img_size),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),"val": transforms.Compose([transforms.Resize(int(img_size * 1.143)),transforms.CenterCrop(img_size),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}# 实例化训练数据集train_dataset = MyDataSet(images_path=train_images_path,images_class=train_images_label,transform=data_transform["train"])# 实例化验证数据集val_dataset = MyDataSet(images_path=val_images_path,images_class=val_images_label,transform=data_transform["val"])batch_size = args.batch_sizenw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workersprint('Using {} dataloader workers every process'.format(nw))train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,pin_memory=True,num_workers=nw,collate_fn=train_dataset.collate_fn)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=batch_size,shuffle=False,pin_memory=True,num_workers=nw,collate_fn=val_dataset.collate_fn)model = create_model(class_num=16).to(device)if args.weights != "":assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)model.load_state_dict(torch.load(args.weights, map_location=device))if args.freeze_layers:for name, para in model.named_parameters():# 除head外,其他权重全部冻结if "head" not in name:para.requires_grad_(False)else:print("training {}".format(name))pg = [p for p in model.parameters() if p.requires_grad]optimizer = optim.AdamW(pg, lr=args.lr, weight_decay=5E-2)for epoch in range(args.epochs):# traintrain_loss, train_acc = train_one_epoch(model=model,optimizer=optimizer,data_loader=train_loader,device=device,epoch=epoch)# validateval_loss, val_acc = evaluate(model=model,data_loader=val_loader,device=device,epoch=epoch)train_acc_list.append(train_acc)train_loss_list.append(train_loss)val_acc_list.append(val_acc)val_loss_list.append(val_loss)tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]tb_writer.add_scalar(tags[0], train_loss, epoch)tb_writer.add_scalar(tags[1], train_acc, epoch)tb_writer.add_scalar(tags[2], val_loss, epoch)tb_writer.add_scalar(tags[3], val_acc, epoch)tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)if val_loss == min(val_loss_list):print('save-best-epoch:{}'.format(epoch))with open('loss.txt', 'w') as fb:fb.write(str(train_loss) + ',' + str(train_acc) + ',' + str(val_loss) + ',' + str(val_acc))torch.save(model.state_dict(), "./weights/flower-best-epoch.pth")if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--num_classes', type=int, default=16)parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch-size', type=int, default=16)parser.add_argument('--lr', type=float, default=0.0001)# 数据集所在根目录parser.add_argument('--data-path', type=str,default="all_data")# 预训练权重路径,如果不想载入就设置为空字符parser.add_argument('--weights', type=str, default='',help='initial weights path')# 是否冻结权重parser.add_argument('--freeze-layers', type=bool, default=False)parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')opt = parser.parse_args()train_loss_list = []train_acc_list = []val_loss_list = []val_acc_list = []main(opt)draw(train_acc_list, val_acc_list, 'acc')draw(train_loss_list, val_loss_list, 'loss')

开始训练

在all_data中准备好数据集,并设置好超参数后,即可开始运行train.py

成功运行效果展示

1)会生成dataset.png数据集分布柱状图

2)pycharm下方实时显示相关训练日志

在这里插入图片描述

等待所有epoch训练完成后代码会自动停止,并在weights文件夹下生成训练好的模型pth文件,并生成准确率和损失值曲线图。

在这里插入图片描述

在这里插入图片描述

4、训练好的模型预测

无界面预测代码为:predict.py

在这里插入图片描述

import os
import jsonimport torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as pltfrom models.mobilenet import mobilenet  as create_modeldef main(img_path):import osos.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")img_size = 224data_transform = transforms.Compose([transforms.Resize(int(img_size * 1.143)),transforms.CenterCrop(img_size),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)img = Image.open(img_path)plt.imshow(img)# [N, C, H, W]img = data_transform(img)# expand batch dimensionimg = torch.unsqueeze(img, dim=0)# read class_indictjson_path = './class_indices.json'assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)json_file = open(json_path, "r")class_indict = json.load(json_file)# create model  创建模型网络model = create_model(class_num=len(os.listdir('all_data'))).to(device)# load model weights  加载模型model_weight_path = "weights/flower-best-epoch.pth"model.load_state_dict(torch.load(model_weight_path, map_location=device))model.eval()#调用模型进行检测with torch.no_grad():# predict classoutput = torch.squeeze(model(img.to(device))).cpu()predict = torch.softmax(output, dim=0)predict_cla = torch.argmax(predict).numpy()for i in range(len(predict)):print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],predict[i].numpy()))# 返回检测结果和准确率res = class_indict[str(list(predict.numpy()).index(max(predict.numpy())))]num= "%.2f" % (max(predict.numpy()) * 100) + "%"print(res,num)return res,numif __name__ == '__main__':img_path = r"all_data\向日葵\2.png"main(img_path)

使用方法
1)设置好训练好的模型权重路径
2)设置好要预测的图像的路径
直接右键运行即可,成功运行后会在pycharm下方生成预测结果数据

在这里插入图片描述

5、UI界面设计-pyqt5

两款UI样式界面,自由选择

样式1纯色背景界面,可自由更改界面背景颜色

在这里插入图片描述

样式2:背景图像界面

在这里插入图片描述

对应代码文件
1)ui.py 和 ui2.py
用于设置界面中控件的属性样式和显示的文本内容,可自行修改界面背景色及界面文本内容

在这里插入图片描述
在这里插入图片描述

2)主界面.py 和 主界面2.py
用于设置界面中的相关按钮及动态的交互功能

在这里插入图片描述

3)inf.py 相关介绍及展示信息文本,可自行修改介绍信息

在这里插入图片描述

6、项目相关评价指标

1、准确率曲线图(训练后自动生成)
在这里插入图片描述

2、损失值曲线图(训练后自动生成)
在这里插入图片描述

3、混淆矩阵图
在这里插入图片描述

生成方式:训练完模型后,运行confusion_matrix.py文件,设置好使用的模型权重文件后,直接右键运行即可,等待模型进行预测生成

在这里插入图片描述

以上为本项目完整的构建实现流程步骤,更加详细的项目讲解视频如下
https://www.bilibili.com/video/BV1Kt22YPEb2
(对程序使用,项目中各个文件作用,算法网络结构,所有程序代码等进行的细致讲解,时长1小时)

七、项目论文报告

本项目有配套的论文报告(1w字左右),部分截图如下

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

八、版权说明及获取方式

1、项目获取方式

1)项目全套文件代码获取地址
项目全套代码地址:https://yuanlitui.com/a/acg
2)项目配套论文报告获取地址
项目配套报告:https://yuanlitui.com/a/ac4

2、项目版权说明及定制服务

本项目由本人 Smaller-孔 设计并开发
可提供服务如下:
1)项目功能及界面定制改进服务
如添加用户登录注册、语音播报、语音输入等系统功能,设计Web端界面,添加mysql数据库替换数据集、算法、及算法改进对比等服务
2)售后服务
获取项目后,按照配置视频进行配置,配置过程中出现问题可添加我咨询答疑,配置好后后续因产品自身代码问题无法正常使用,提供1月内免费售后(因使用者对代码或环境进行调整导致程序无法正常运行需有偿售后),项目文件中售后服务文档获取本人联系方式,提供后续售后及相关定制服务。
3)深度学习CV领域的毕设项目,项目及技术1v1辅导,开发等

相关文章:

基于深度学习CNN算法的花卉分类识别系统01--带数据集-pyqt5UI界面-全套源码

文章目录 基于深度学习算法的花卉分类识别系统一、项目摘要二、项目运行效果三、项目文件介绍四、项目环境配置1、项目环境库2、环境配置视频教程 五、项目系统架构六、项目构建流程1、数据集2、算法网络Mobilenet3、网络模型训练4、训练好的模型预测5、UI界面设计-pyqt56、项目…...

3174、清除数字

3174、[简单] 清除数字 1、题目描述 给你一个字符串 s 。你的任务是重复以下操作删除 所有 数字字符: 删除 第一个数字字符 以及它左边 最近 的 非数字 字符。 请你返回删除所有数字字符以后剩下的字符串。 2、解题思路 遍历字符串: 我们需要逐个遍…...

C++ 优先算法 —— 无重复字符的最长子串(滑动窗口)

目录 题目: 无重复字符的最长子串 1. 题目解析 2. 算法原理 Ⅰ. 暴力枚举 Ⅱ. 滑动窗口(同向双指针) 3. 代码实现 Ⅰ. 暴力枚举 Ⅱ. 滑动窗口 题目: 无重复字符的最长子串 1. 题目解析 题目截图: 此题所说的…...

ADS学习笔记 6. 射频发射机设计

基于ADS2023 update2 更多ADS学习笔记:ADS学习笔记 1. 功率放大器设计ADS学习笔记 2. 低噪声放大器设计ADS学习笔记 3. 功分器设计ADS学习笔记 4. 微带分支定向耦合器设计ADS学习笔记 5. 微带天线设计 -1、射频发射机性能指标 在射频电路和系统中,发送…...

上海乐鑫科技一级代理商飞睿科技,ESP32-C61高性价比WiFi6芯片高性能、大容量

在当今快速发展的物联网市场中,无线连接技术的不断进步对智能设备的性能和能效提出了更高要求。为了满足这一需求,乐鑫科技推出了ESP32-C61——一款高性价比的Wi-Fi 6芯片,旨在为用户设备提供更出色的物联网性能,并满足智能设备连…...

QT QRadioButton控件 全面详解

本系列文章全面的介绍了QT中的57种控件的使用方法以及示例,包括 Button(PushButton、toolButton、radioButton、checkBox、commandLinkButton、buttonBox)、Layouts(verticalLayout、horizontalLayout、gridLayout、formLayout)、Spacers(verticalSpacer、horizontalSpacer)、…...

51单片机从入门到精通:理论与实践指南(一)

单片机在智能控制领域的应用已非常普遍,发展也很迅猛,学习和使用单片机的人员越来越多。虽然新型微控制器在不断推出,但51单片机价格低廉、易学易用、性能成熟,在家电和工业控制中有一定的应用,而且学好了51单片机&…...

零基础3分钟快速掌握 ——Linux【终端操作】及【常用指令】Ubuntu

1.为啥使用Linux做嵌入式开发 能广泛支持硬件 内核比较高效稳定 原码开放、软件丰富 能够完善网络通信与文件管理机制 优秀的开发工具 2.什么是Ubuntu 是一个以桌面应用为主的Linux的操作系统, 内核是Linux操作系统, 具有Ubuntu特色的可视…...

C#中面试的常见问题007

1.在EF中实现一个实体对应多个表 1. 表拆分(Table Splitting) 表拆分是指将一个实体映射到两个或多个表中的行。这通常发生在实体的属性分布在不同的表中,但这些表通过外键关联到同一个主表。在EF Core中,可以通过Fluent API来配…...

人工智能——大语言模型

5. 大语言模型 5.1. 语言模型历史 20世纪90年代以前的语言模型都是基于语法分析这种方法,效果一直不佳。到了20世纪90年代,采用统计学方法分析语言,取得了重大进展。但是在庞大而复杂的语言信息上,基于传统统计的因为计算量巨大…...

nodejs第三方库sharp对图片的操作生成新图片、压缩、添加文字水印及图片水印等

Sharp是一个基于libvips的高性能Node.js图像处理库,它提供了广泛的功能,包括调整大小、裁剪、旋转、格式转换等。Sharp可以处理多种图像格式,并且能够高效地转换图像格式。 相关说明及用法看:https://sharp.nodejs.cn/ 安装&#…...

力扣第 67 题 “二进制求和”

题目描述 给你两个二进制字符串 a 和 b,以二进制字符串的形式返回它们的和。 示例 1: 输入: a "11", b "1" 输出: "100"示例 2: 输入: a "1010", b "1011" 输出: "10101"提示: 每个字符串仅由…...

Spring Boot优雅读取配置信息 @EnableConfigurationProperties

很多时候我们需要将一些常用的配置信息比如oss等相关配置信息放到配置文件中。常用的有以下几种,相信大家比较熟悉: 1、Value(“${property}”) 读取比较简单的配置信息: 2、ConfigurationProperties(prefix “property”)读取配置信息并与 …...

鸿蒙多线程开发——Sendable对象的序列化与冻结操作

1、Sendable对象的序列化与反序列化 Sendable对象的简单介绍参考文章:鸿蒙多线程开发——线程间数据通信对象03(sendable) 与JSON对象的序列化和反序列化类似,Sendable对象的序列化和反序列化是通过ArkTs提供的ASON工具来完成。 与JSON类似&#xff0…...

nodepad配置c/c++ cmd快速打开创建项目文件

前提:下载MinGw,并且配置环境变量 点击阅读次篇文章配置MinGw 无论是哪个编译器,执行c文件都是经历以下步骤: 编译文件生成exe文件执行该exe文件 我们先手动完成这两部 手动编译文件使用指令 gcc {你的c文件} -o {生成文件名}生成exe文件 第二步运行exe直接点击该文…...

【C++】读取数量不定的输入数据

读取数量不定的输入数据 似乎是一个很实用的东西? 问题: 我们如何对用户输入的一组数(事先不知道具体有多少个数)求和? 这需要不断读取数据直至没有新的输入为止。(所以我们的代码就是这样设计的&#x…...

ESC字符背后的故事(27 <> 033 | x1B ?)

ANSI不可见字符转义,正确的理解让记忆和书写变得丝滑惬意。 (笔记模板由python脚本于2024年11月26日 15:05:33创建,本篇笔记适合python 基础扎实的coder翻阅) 【学习的细节是欢悦的历程】 Python 官网:https://www.python.org/ Free&#xf…...

基于NXP LS1043 OpenWRT智能交通边缘网关设计

0 引言 城市公共交通是与人们生产生活息息相关的重 要基础设施,是关系国计民生的社会公益事业。“城 市公共交通发展的十三五规划”明确指出:建设与移 动互联网深度融合的智能公交系统;推进“互联网 城市公交”发展;推进多元…...

绪论相关题目

1.在数据结构中,从逻辑上可以把数据结构分成( C)。 A. 动态结构和静态结构 B. 紧凑结构和非紧凑结构 C. 线性结构和非线性结构 D. 内部结构和外部结构 2.在数据结构中,从存储结构上可以将之分为( B)。 A. 动态结构和静态结构 B. 顺序存储和非顺序存储 C. 紧凑结构和非紧…...

中国科学院大学研究生学术英语读写教程 Unit7 Materials Science TextA 原文和翻译

中国科学院大学研究生学术英语读写教程 Unit7 Materials Science TextA 原文和翻译 Why Is the Story of Materials Really the Story of Civilisation? 为什么材料的故事实际上就是文明的故事? Mark Miodownik 1 Everything is made of something. Take away co…...

centos系列安装服务器时分区

服务器安装手动分区,标准分区(注意顺序): 自定义标准分区 /boot/efi 200M;/boot 1G 放引导程序和内核文件及根文件; /var 磁盘1/10内存尽量大存放日志文件; /usr 磁盘1/10内存尽量大存在程序软件包; swap 虚…...

vue的理解

什么是vue vue是一套用于构建用户界面的渐进式框架,与其他框架不同的是,vue被设计为可以自底向上逐层应用,它也是创建单页面应用的web应用框架。vue的核心库只关注视图层,不仅易上手,还便于与第三方库或既有项目整合。…...

111. UE5 GAS RPG 实现角色技能和场景状态保存到存档

实现角色的技能存档保存和加载 首先,我们在LoadScreenSaveGame.h文件里,增加一个结构体,用于存储技能相关的所有信息 //存储技能的相关信息结构体 USTRUCT(BlueprintType) struct FSavedAbility {GENERATED_BODY()//需要存储的技能UPROPERT…...

抖音短视频矩阵源代码部署搭建流程

抖音短视频矩阵源代码部署搭建流程 1. 硬件准备 需确保具备一台性能足够的服务器或云主机。这些硬件设施应当拥有充足的计算和存储能力,以便支持抖音短视频矩阵系统的稳定运行。 2. 操作系统安装 在选定的服务器或云主机上安装适合的操作系统是关键步骤之一。推…...

leetcode - LRU缓存

什么是 LRU LRU (最近最少使用算法), 最早是在操作系统中接触到的, 它是一种内存数据淘汰策略, 常用于缓存系统的淘汰策略. LRU算法基于局部性原理, 即最近被访问的数据在未来被访问的概率更高, 因此应该保留最近被访问的数据. 最近最少使用的解释 LRU (最近最少使用算法), 中…...

计算机网络八股整理(一)

计算机网络八股文整理 一:网络模型 1:网络osi模型和tcp/ip模型分别介绍一下 osi模型是国际标准的网络模型,它由七层组成,从上到下分别是:应用层,表示层,会话层,传输层,…...

了解 CSS position 属性

CSS position 属性 在前端开发中,布局是一个至关重要的部分,而 CSS 的 position 属性是控制元素在页面中位置的核心工具。 本文将解释 CSS 中的 position 属性,包括其不同的值、效果及典型使用场景,以帮助你更好地理解和应用这一…...

数据结构 【二叉树(上)】

谈到二叉树,先来谈谈树的概念。 1、树的概念及结构 树是一种非线性的数据结构,它的逻辑关系看起来像是一棵倒着的树,也就是说它是根在上,而叶子在下的, 在树这种数据结构中,最顶端的结点称为根结点。在树的…...

C++11(中)

C11(中) 1.可变参数模板1.1.使用场景 2.lambda表达式(重要)2.1.使用说明2.2.函数对象与lambda表达式 3.线程库3.1.thread3.2.atomic原子库操作3.3.mutex3.3.1.mutex的种类3.3.2.lock_guard3.3.3.unique_lock 🌟&#x…...

下拉选择器,选择框,支持单选、多选、筛选和清空功能,支持vue2和vue3

下拉选择器,选择框,支持单选、多选、筛选和清空功能,支持vue2和vue3https://ext.dcloud.net.cn/plugin?id8159 点击即可。 注意数据来源: 选择的:valueName:选择下拉选择显示的显示屏...

网站开发员的工资/网站推广沈阳

31.括号序列 题目描述 给出一个仅包含字符’(’,’)’,’{’,’}’,’[‘和’]’,的字符串,判断给出的字符串是否是合法的括号序列 括号必须以正确的顺序关闭,"()“和”()[]{}“都是合法的括号序列,但”(]“和”([)]"不合法。 输…...

网站优化流程图/百度推广开户多少钱

大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。 今天给大侠带来“FPGA学习系列altera"系列…...

网站access数据怎么做/seo优化关键词分类

用两个低位数的DA合成高位数的DA...

兴扬汽车网站谁做的/论坛推广

java生成6位随机数, 全是数字 // 生成6位随机数字 int random6 (int) ((Math.random() * 9 1) * 100000); // 生成5位随机数字 int random5 (int) ((Math.random() * 9 1) * 10000); // 生成4位随机数字 int random4 (int) ((Math.random() * 9 1) * 1000); // 生成3…...

济南做网站的好公司/网络营销策略理论

阅读本文大概需要 2 分钟。功能: 查看本 LAN 内 IP 对应的主机 MAC 地址,以及 MAC 的占用问题。有两个版本:ThomasHabets 版和 Linuxiputils suite通过 arping-V 查看支持的版本。Centos 系使用后者,debian 系使用前者。使用&…...

做网站代理拉别人赌博/手机优化软件排名

局部组件:局部组件的使用前提是:在根组件App.vue中导入,声明,引用后才能使用,不导入,则不能使用。 全局组件:在入口函数main.js中声明该组件为全局组件后,在任意子组件中可直接使用…...