当前位置: 首页 > news >正文

对抗攻击算法:FGSM和PGD

FGSM

传送门
FGSM 利用了梯度上升的思想,通过损失函数相对于输入图像的梯度来找到 最容易 迷惑网络的方向,并沿着这个方向对图像进行微小的扰动。

FGSM 的基本想法是,沿着这个梯度的符号方向对图像进行微调,以最大化损失函数。具体公式为:
在这里插入图片描述
在这里插入图片描述

FGSM攻击算法代码:

# 定义 FGSM 攻击函数
def fgsm_attack(image, epsilon, data_grad):# 生成扰动方向sign_data_grad = data_grad.sign()# 生成对抗样本perturbed_image = image + epsilon * sign_data_grad# 对抗样本像素值范围约束在 [0,1]perturbed_image = torch.clamp(perturbed_image, 0, 1)return perturbed_image

PGD:

传送门
PGD算法在论文 《Towards Deep Learning Models Resistant to Adversarial Attacks 》中提出,它既是产生对抗样本的攻击算法,也是对抗训练的防御算法。
除此之外,PGD算法也是一阶中的最强攻击(一阶是指利用一阶导数)

设想目标模型如果是一个线性模型,损失函数对输入的导数一定是一个固定值,一次迭代和多次迭代时扰动的方向都不会发生改变,但是,如果目标模型为非线性,每次迭代之间的方向都有可能会发生变化,这时FGSM的单次迭代效果肯定不如PGD的效果好。FGSM算法通过一步计算,可能达不到最优效果,而PGD算法则是每次走一小步,但是多走几次,如果超过了扰动半径为ε的空间,就重新映射回来。

下面来看一下PGD算法的公式:
在这里插入图片描述
这里主要看一下公式最前面的投影到x+S的意思:就是通过一系列操作得到对抗样本后将对抗样本减去原始图像得到了扰动值然后将扰动值限制在-ε到+ε之间得到了新的扰动值,原始图像加上新的扰动值就是最终生成的对抗样本

关于对式子中sgn(L(θ,x,y)’)的理解可从FGSM中获取:

在FGSM中引入符号函数可以确定对抗扰动的方向。Goodfellow指出,如果我们的变化量与梯度的变化方向完全一致,那么将对分类结果产生较大的变化。因此,在FGSM中不需要关心具体的梯度大小,只需要知道方向即可。

符号函数sign:
在这里插入图片描述

PGD的核心代码:

# PGD攻击方式,属于FGSM攻击的变体
def PGD_attack(model, image, label, epsilon=0.8, alpha=0.1, iters=40):image = image.to(device)label = label.to(device)loss = nn.CrossEntropyLoss()ori_image = image.datafor i in range(iters): # 每次走一小步,但是多走几次image.requires_grad = Trueoutput = model(image)model.zero_grad()cost = loss(output, label).to(device)cost.backward()# 对抗样本 = 原始图像 + 扰动adv_image = image + alpha * image.grad.sign()# 限制扰动范围eta = torch.clamp(adv_image - ori_image, min=-epsilon, max=epsilon)# 进行下一轮的对抗样本生成image = torch.clamp(ori_image + eta, min=0, max=1).detach()return image

相关文章:

对抗攻击算法:FGSM和PGD

FGSM 传送门 FGSM 利用了梯度上升的思想,通过损失函数相对于输入图像的梯度来找到 最容易 迷惑网络的方向,并沿着这个方向对图像进行微小的扰动。 FGSM 的基本想法是,沿着这个梯度的符号方向对图像进行微调,以最大化损失函数。具…...

【八股文】小米

文章目录 一、vector 和 list 的区别?二、include 双引号和尖括号的区别?三、set 的底层数据结构?四、set 和 multiset 的区别?五、map 和 unordered_map 的区别?六、虚函数和纯虚函数的区别?七、extern C …...

xtu oj 众数

样例输入# 3 1 0 1 2 1 1 2 3 1 1 2 2样例输出# 1 2 3 解题思路:与数组大小有关,先排序 举个例子思考一下 n4 k2 数组为1 2 3 4 如果我们想让众数那个位的值为3(即max3),3出现的次数为3,即众数为3,需要修改多少次…...

ENVI计算ROI分离度为灰色compute roi separability

我们在使用ENVI做影像分类的时候,需要采集样本兴趣区(ROI),在采集完兴趣区需要计算样本ROI的分离度。 但是有时会发下你 计算ROI分离度的选项为灰色状态不能计算。 如果不是以下问题: “一个是必须首先选择或创建至少…...

Adaboost集成学习 | Python实现基于NuSVR-Adaboost多输入单输出回归预测

目录 效果一览基本介绍程序设计参考资料效果一览 基本介绍 基于NuSVR-Adaboost多输入单输出回归预测python代码 NuSVR是一种支持向量回归(SVR)算法的变体,用于解决回归问题。SVR是一种监督学习方法,它用于预测连续目标变量,而不是分类标签。NuSVR在SVR的基础上引入了一个…...

Python学习第十三天--面向对象,类和对象

一、面向过程和面向对象区别 面向过程:需要实现一个功能时,着重的是开发的步骤和过程,每个步都需要自己亲力亲为,需要编写代码(自己来做) 面向对象:需要实现一个功能时,不注重的是…...

AI运用落地思考:如何用AI进行系统运维?

1. 故障预测与预防 数据收集与分析:通过收集系统的各种运行数据,如服务器性能指标(CPU使用率、内存占用、磁盘I/O等)、网络流量数据、应用程序日志等。利用AI算法对这些海量数据进行分析,挖掘数据中的模式和相关性。例…...

springboot学习-分页/排序/多表查询的例子

最近喜欢上了springboot,真是个好的脚手架。今天继续学习分页/排序/多表查询等复杂功能。按步骤记录如下. 按步骤做的发现不可用,最终还是用的jdbctemplate解决。这也是一次经验。总计在最后。 1.maven依赖 首先从https://start.spring.io/ 选择需要的…...

windows 应用 UI 自动化实战

UI 自动化技术架构选型 UI 自动化是软件测试过程中的重要一环,网络上也有很多 UI 自动化相关的知识或资料,具体到 windows 端的 UI 自动化,我们需要从以下几个方面考虑: 开发语言 毋庸置疑,在 UI 自动化测试领域&am…...

ffmpeg命令详解

原文网址:ffmpeg命令详解_IT利刃出鞘的博客-CSDN博客 简介 本文介绍ffmpeg命令的用法。 命令示例 1.mp4和avi的基本互转 ffmpeg -i D:\input.mp4 E:\output.avi ffmpeg -i D:\input.avi E:\output.mp4 -i 表示input,即输入。后面填一个输入地址和一…...

【漏洞复现】CVE-2022-43396

漏洞信息 NVD - CVE-2022-43396 In the fix for CVE-2022-24697, a blacklist is used to filter user input commands. But there is a risk of being bypassed. The user can control the command by controlling the kylin.engine.spark-cmd parameter of conf. 背景介绍…...

文件的摘要算法(md5、sm3、sha256、crc)

为了校验文件在传输中保证完整性和准确性,因此需要发送方先对源文件产生一个校验码,并将该值传输给接收方,将附件通过ftph或http方式传输后,由接收方使用相同的算法对接收文件再获取一个新的校验码,将该值和发送方传的…...

如何借助AI生成PPT,让创作轻松又高效

PPT是现代职场中不可或缺的表达工具,但同时也可能是令人抓狂的时间杀手。几页幻灯片的制作,常常需要花费数小时调整字体、配色与排版。AI的飞速发展为我们带来了革新——AI生成PPT的技术不仅让制作流程大大简化,还重新定义了效率与创意的关系…...

云技术-docker

声明! 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团…...

对docker安装的mysql实现主从同步

1:分别安装mysql主,从数据库 将主库容器名称改为mysql_master,将从库容器名称改为mysql_slave 安装教程:docker安装mysql 2:配置主库的my.cnf挂载文件 [mysqld] #log-bin:表示启用binlog功能,并指定二进制日志的存储目录。 log-binmysql-bin #binlog_f…...

【不定长滑动窗口】【灵神题单】【刷题笔记】

采摘水果 fruits[i]表示第i棵树上的水果种类目的是尽可能多收集水果规矩: 只有两个篮子,且每个篮子只能装一种水果,但是每个篮子能装的总量没限制一旦开始采摘,就会连续采摘,把两个篮子都用掉也就是说,采摘到最后一颗…...

AI写论文指令

一、论文选题指令 1、确定研究对象:我是一名xxx,请从以下素材内容中,结合xx相关知识,提炼出可供参考的学术概念 。以下是结合素材内容,提炼出的几个可供参考的学术概念 概念a:概念b:概念C&…...

2625扁平化嵌套数组

请你编写一个函数,它接收一个 多维数组 arr 和它的深度 n ,并返回该数组的 扁平化 后的结果。 多维数组 是一种包含整数或其他 多维数组 的递归数据结构。 数组 扁平化 是对数组的一种操作,定义是将原数组部分或全部子数组删除,…...

QT6学习第五天 第一个QT Quick程序

QT6学习第五天 第一个QT Quick程序 概述创建Qt Quick程序使用Qt资源文件 概述 如果将程序的用户界面成为前端,程序的数据存储和逻辑业务成为后端,那么传统QT Widgets程序的前后端都是用C完成的。对于现代软件开发而言,前端演化速度远快于后端…...

【开发商城系统】

在广西开发商城系统,可以按照以下步骤进行: 确定项目需求:与客户沟通,了解商城系统所需的功能和特性,并确定项目的预算和时间限制。 进行市场调研:了解广西地区的电商市场情况,包括竞争对手、消…...

(11)(2.2) BLHeli32 and BLHeli_S ESCs(二)

文章目录 前言 1 传递支持 前言 BLHeli 固件和配置应用程序的开发是为了允许配置 ESC 并提供额外功能。带有此固件的 ESC 允许配置定时、电机方向、LED、电机驱动频率等。在尝试使用 BLHeli 之前,请按照 DShot 设置说明进行操作(DShot setup instructions)。 1 传…...

C++ 11重点总结1

智能指针 智能指针: C11引入了四种智能指针: auto_ptr(已弃用)、unique_ptr、shared_ptr和weak_ptr。智能指针可以更有效地管理堆内存,并避免常见的内存泄漏问题。 shared_ptr: 自定义删除器。 shared_ptr使用引用计数来管理它指向的对象的生命周期。多个shared_ptr实例可以指向…...

海康VsionMaster学习笔记(学习工具+思路)

一、前言 VisionMaster算法平台集成机器视觉多种算法组件,适用多种应用场景,可快速组合算法,实现对工件或被测物的查找测量与缺陷检测等。VM算法平台依托海康威视在图像领域多年的技术积淀,自带强大的视觉分析工具库,可…...

基于Python语言的Web爬虫设计源码

基于Python语言的Web爬虫设计源码地址 该项目是一个基于Python语言的Web爬虫设计源码,包含20个文件,其中18个为Python源代码文件,1个Markdown文件用于文档说明,以及1个配置文件。该爬虫专注于网络信息的抓取与处理。 关键词 Py…...

学习日志 --A5rZ

24.11.27 0001:2024 强网杯青少年专项赛 EnterGam 复现已完成 0002:在x86上模拟arm64(搁置,原因:资料过少,可行性过低) 0003:2024 强网杯青少年专项赛 Flip_over 复现终止(无arm真机) 0004: 开始复现 2024 强网杯青少年专项赛 journey_story...

JVM_垃圾收集器详解

1、 前言 JVM就是Java虚拟机,说白了就是为了屏蔽底层操作系统的不一致而设计出来的一个虚拟机,让用户更加专注上层,而不用在乎下层的一个产品。这就是JVM的跨平台,一次编译,到处运行。 而JVM中的核心功能其实就是自动…...

Javascript Insights: Visualizing Var, Let, And Const In 2024

11/2024 出版 MP4 |视频:h264, 19201080 |音频:AAC,44.1 KHz 语言:英语 |大小: 2.96 GB |时长: 5 小时 34 分钟 为所有认真的 JavaScript 开发人员可视化与 VAR、LET、CONST 和 EXECUTON CONTE…...

KL散度改写为一个可用于优化的形式

理解 KL 散度及其公式推导过程 在信息论和概率论中,KL散度(Kullback-Leibler Divergence)是衡量两个概率分布之间差异的重要工具。本文将从 KL 散度的定义入手,详细解析其公式来源以及如何将其改写为一个可用于优化的形式。 1. 什…...

Java代码操作Zookeeper(使用 Apache Curator 库)

1. Zookeeper原生客户端库存在的缺点 复杂性高:原生客户端库提供了底层的 API,需要开发者手动处理很多细节,如连接管理、会话管理、异常处理等。这增加了开发的复杂性,容易出错。连接管理繁琐:使用原生客户端库时&…...

【Linux】Make/Makefile

这个3/4行的语法和1/2行是一样的。也是依赖关系和依赖方法。 make命令扫描makefile文件时,从上向下扫描,默认形成一个目标文件。 指定make clean的时候才回去执行对应的清除。 为什么要给我们的clean.PHONY:clean声明它是伪目标呢? PHONY类…...

南通建设企业网站/2021百度热搜年度榜

在现实生活中每个人去申请贷款,批下来的额度以及利息是不一样的,这样就有许多人觉得郁闷,为什么会每个人的差距这么大。其实,我们应该想一想自己的征信情况,负债情况,工作情况等是否好,是否符合…...

门户网站建设方法/短视频seo询盘获客系统

芯片支持库(CSL)提供了一个用于配置和控制片上外设的C语言接口。它有各个分立的模块组成,并被编译成为库文件。每个模块对应一个单独的外设,除了个别提供通用程序支持的模块。使用CSL可以方便片上外设的使用,缩短开发周…...

网站建设我要自学网/宣传推广方案

自然框架里的元数据 元数据的职责:  自然框架里的元数据有三个职责:描述数据库(字段、表、视图等),描述项目(功能节点、操作按钮等),项目和数据库的关系(一个列表页面里…...

网站建设潍坊/电商网站图片

2014华为机试西安地区A组试题 题目一、分苹果 M个同样苹果放到N个同样篮子里有多少种放法,同意有篮子不放。 1<M<10。1<N<10 比如5个苹果三个篮子&#xff0c;3&#xff0c;1&#xff0c;1 和 1,1,3是同一种放法 输入 7 3 输出 8题目分析&#xff1a; 这道题相似于…...

网站怎么做全屏滚动/网络优化工程师吃香吗

一、标准制修订 2020年&#xff0c;完成标准制修订数量418项&#xff0c;较上年增加47项。其中&#xff0c;国家标准31项&#xff0c;较上年减少7项&#xff1b;行业标准103项&#xff0c;较上年增加6项&#xff1b;地方标准204项&#xff0c;较上年增加39项&#xff1b;团体标…...

丹东谁做微网站/深圳seo优化培训

小伙伴们&#xff0c;我们分享继续哦第一节进程和线程https://www.bilibili.com/video/BV137411V7Y1/?p1951.1 进程和线程程序Program是一段静态的代码&#xff0c;它是应用程序执行的蓝本进程Process是指一种正在运行的程序&#xff0c;有自己的地址空间进程的特点动态性并发…...