当前位置: 首页 > news >正文

城市轨道交通运营控制指挥中心设计方案

为某城市轨道交通运营控制指挥中心(OCC)的设计提供方案时,我们需要考虑到多个方面的需求,包括系统架构、设备选择、功能实现、数据流与监控、通信管理等。以下是一个综合性的设计方案,涉及系统硬件和软件的选择、布局规划、安全性等方面,以确保指挥中心的高效运作、实时监控、应急响应能力。


城市轨道交通运营控制指挥中心设计方案

1. 设计目标

  • 实时监控:对轨道交通的各项运营数据和设备状态进行实时监控,包括列车运行、站点情况、信号系统等。
  • 应急响应:能够快速响应并处理突发事件和紧急情况,如设备故障、列车延误、安保事件等。
  • 数据分析与决策支持:通过大数据分析,为运营优化提供决策支持,提高运营效率。
  • 安全性与可靠性:保证系统的高可靠性、冗余备份和安全防护,防止数据丢失或泄漏。
  • 系统集成:集成各类系统,如SCADA(Supervisory Control and Data Acquisition)、BMS(Building Management System)、视频监控等。

2. 系统架构

2.1 总体架构

设计架构应采用高度模块化与分层的结构,以保证系统的可扩展性、可维护性和容错性。

  • 核心控制平台:基于分布式架构的核心控制平台,负责所有数据采集、处理、控制命令下发、事件管理等。
  • 子系统集成
    • 列车

相关文章:

城市轨道交通运营控制指挥中心设计方案

为某城市轨道交通运营控制指挥中心(OCC)的设计提供方案时,我们需要考虑到多个方面的需求,包括系统架构、设备选择、功能实现、数据流与监控、通信管理等。以下是一个综合性的设计方案,涉及系统硬件和软件的选择、布局规划、安全性等方面,以确保指挥中心的高效运作、实时监…...

多目标优化算法:多目标河马优化算法(MOHOA)求解ZDT1、ZDT2、ZDT3、ZDT4、ZDT6,提供完整MATLAB代码

一、河马优化算法 河马优化算法(Hippopotamus optimization algorithm,HO)由Amiri等人于2024年提出的一种模拟自然界中河马觅食行为的新型群体智能优化算法。该算法由Mohammad Hussein Amiri等人于2024年2月发表在Nature旗下子刊《Scientifi…...

线程与进程的个人理解

进程(Process): 一个程序在执行时,操作系统为其分配的资源(如内存、CPU 时间等)构成了一个进程。每个进程都有自己的独立的地址空间、堆栈和局部变量,它们之间不共享内存(除非通过特…...

vscode的项目给gitlab上传

目录 一.创建gitlab帐号 二.在gitlab创建项目仓库 三.Windows电脑安装Git 四.vscode项目git上传 一.创建gitlab帐号 二.在gitlab创建项目仓库 图来自:Git-Gitlab中如何创建项目、创建Repository、以及如何删除项目_gitlab新建项目-CSDN博客) 三.Windows电脑安…...

企业微信定位打卡

废话少说:定位修改软件链接奉上 一、定位打卡原理 GPS定位:企业微信可以利用手机的GPS功能进行定位,这是一种基于卫星的定位技术,能够提供相对精确的位置信息,通常精确度在20米以内。这种方式耗电较大,且在…...

libaom 源码分析:码率控制介绍

码率控制 命令行码率控制选项:可以看到码率控制包括丢帧、resize、超分、码控模式、目标码率、目标上限下限(类似 x264、x265 中的 VBV)、码控偏置、GOP 码率等。Rate Control Options:--drop-frame=<arg> Temporal resampling threshold (buf %)--resize-mo…...

RK3568平台开发系列讲解(DMA篇)DMA engine使用

🚀返回专栏总目录 文章目录 一、申请DMA channel二、配置DMA channel的参数三、获取传输描述(tx descriptor)四、启动传输沉淀、分享、成长,让自己和他人都能有所收获!😄 📢DMA子系统下有一个帮助测试的测试驱动(drivers/dma/dmatest.c), 从这个测试驱动入手我们了解…...

C++中的函数对象

C 中函数对象的定义和特点 定义&#xff1a;函数对象&#xff08;Function Object&#xff09;也叫仿函数&#xff08;Functor&#xff09;&#xff0c;是一个类&#xff0c;这个类重载了函数调用运算符()。当创建这个类的对象后&#xff0c;可以像使用函数一样使用这个对象&am…...

Linux指标之平均负载(The Average load of Linux Metrics)

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:Linux运维老纪的首页…...

盛最多水的容器

本节将数组与坐标轴共同组成一个容器,通过改变容器的两个端点使容器装的水最多,容器两个端点不断移动可以通过左右指针算法解决. 问题描述: 给定两个非负整数k1,k2...km每个数代表坐标中的一个点(i,ki).在坐标内绘制m条垂线,垂直线i的两个端点分别为(i,k1)和(i,0)找出其中的两…...

光伏功率预测!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型时序预测

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量时序光伏功率预测 (Matlab2023b 多输入单输出) 1.程序已经调试好&#xff0c;替换数据集后&#xff0c;仅运行一个main即可运行&#xff0c;数据格式…...

java全栈day10--后端Web基础(基础知识)

引言&#xff1a;只要能通过浏览器访问的网站全是B/S架构&#xff0c;其中最常用的服务器就是Tomcat 在浏览器与服务器交互的时候采用的协议是HTTP协议 一、Tomcat服务器 1.1介绍 官网地址&#xff1a;Apache Tomcat - Welcome! 1.2基本使用(网上有安装教程&#xff0c;建议…...

使用爬虫时,如何确保数据的准确性?

在数字化时代&#xff0c;数据的准确性对于决策和分析至关重要。本文将探讨如何在使用Python爬虫时确保数据的准确性&#xff0c;并提供代码示例。 1. 数据清洗 数据清洗是确保数据准确性的首要步骤。在爬取数据后&#xff0c;需要对数据进行清洗&#xff0c;去除重复、无效和…...

Burp入门(4)-扫描功能介绍

声明&#xff1a;学习视频来自b站up主 泷羽sec&#xff0c;如涉及侵权马上删除文章 感谢泷羽sec 团队的教学 视频地址&#xff1a;burp功能介绍&#xff08;1&#xff09;_哔哩哔哩_bilibili 本文介绍burp的主动扫描和被动扫描功能。 一、主动扫描 工作原理&#xff1a; 主动…...

Tourtally:颠覆传统的AI智能旅行规划革命

# Tourtally&#xff1a;颠覆传统的AI智能旅行规划革命 在快速变化的旅行科技世界里&#xff0c;一个划时代的平台正在重新定义我们探索世界的方式。让我们一起认识 Tourtally&#xff0c;这个由人工智能驱动的旅行规划助手&#xff0c;正在彻底改变旅行体验。 ## 旅行规划的…...

chrome允许http网站打开摄像头和麦克风

第一步 chrome://flags/#unsafely-treat-insecure-origin-as-secure 第二步 填入网址&#xff0c;点击启用 第三步 重启 Chrome&#xff1a;设置完成后&#xff0c;点击页面底部的 “Relaunch” 按钮&#xff0c;重新启动 Chrome 浏览器&#xff0c;使更改生效。...

视觉经典神经网络与复现:深入解析与实践指南

目录 引言 经典视觉神经网络模型详解 1. LeNet-5&#xff1a;卷积神经网络的先驱 LeNet-5的关键特点&#xff1a; 2. AlexNet&#xff1a;深度学习的突破 AlexNet的关键特点&#xff1a; 3. VGGNet&#xff1a;深度与简洁的平衡 VGGNet的关键特点&#xff1a; 4. ResNe…...

ByConity ELT 测试体验

在实际业务中&#xff0c;用户会基于不同的产品分别构建实时数仓和离线数仓。其中&#xff0c;实时数仓强调数据能够快速入库&#xff0c;且在入库的第一时间就可以进行分析&#xff0c;低时延的返回分析结果。而离线数仓强调复杂任务能够稳定的执行完&#xff0c;需要更好的内…...

对象键值对内容映射

对象映射&#xff1a; 数据字段的英文名映射为更易理解的中文标签进行展示。即数据字段英文名 -> 中文描述。 作用&#xff1a; 提高代码的可读性。支持数据字段与展示内容的解耦&#xff0c;方便修改展示语言或样式&#xff0c;而无需改动数据源。 映射特点&#xff1a…...

《生成式 AI》课程 第7講:大型語言模型修練史 — 第二階段: 名師指點,發揮潛力 (兼談對 ChatGPT 做逆向工程與 LLaMA 時代的開始)

资料来自李宏毅老师《生成式 AI》课程&#xff0c;如有侵权请通知下线 Introduction to Generative AI 2024 Springhttps://speech.ee.ntu.edu.tw/~hylee/genai/2024-spring.php 摘要 这一系列的作业是为 2024 年春季的《生成式 AI》课程设计的&#xff0c;共包含十个作业。…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

Vue3 PC端 UI组件库我更推荐Naive UI

一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用&#xff0c;前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率&#xff0c;还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库&#xff08;Naive UI、Element …...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...

内窥镜检查中基于提示的息肉分割|文献速递-深度学习医疗AI最新文献

Title 题目 Prompt-based polyp segmentation during endoscopy 内窥镜检查中基于提示的息肉分割 01 文献速递介绍 以下是对这段英文内容的中文翻译&#xff1a; ### 胃肠道癌症的发病率呈上升趋势&#xff0c;且有年轻化倾向&#xff08;Bray等人&#xff0c;2018&#x…...