ML 系列:第 31 节— 机器学习中的协方差和相关性
文章目录
- 一、说明
- 二、协方差和相关性
- 2.1 协方差的概念
- 2.1 相关
- 三、有关关联的高级主题 (有关详细信息)
- 3.1 相关性和独立性
- 3.2 零相关性和依赖性示例
- 四、相关性和因果关系
- 五、结论
一、说明
协方差量化了两个随机变量协同变化的程度。当一个变量的较高值与另一个变量的较高值对齐时,同样,对于较低的值,协方差为正。相反,如果一个变量的较高值与另一个变量的较低值一致,则协方差为负。
二、协方差和相关性
2.1 协方差的概念
这是协方差的公式:
协方差提示
协方差表示变量之间线性关系的方向。
如果 X 和 Y 趋于一起增加,则它们的协方差为正。
如果 X 增加,而 Y 减少,则它们的协方差为负。
如果 X 和 Y 是独立的,则它们的协方差为零。
2.1 相关
相关性量化了两个变量的相关程度。它是协方差的归一化形式,其值范围为 -1 到 1。相关性 1 表示完全正关系,-1 表示完全负关系,0 表示无关系。
公式:
相关性提示:
相关性不仅衡量两个变量之间线性关系的方向,还衡量其强度。
正值表示正关系。
负值表示负关系。
接近零的值表示没有线性关系。
以下是一些用于更好地理解不同值相关性的图:
图 2.与不同值的相关性 [维基百科上的数据]
实例
示例 1:协方差计算
让我们考虑两个变量 X 和 Y,它们的值如下:
X = [2, 4, 6, 8]
Y = [1, 3, 5, 7]
协方差的 Python 代码:
import numpy as np# Data
X = np.array([2, 4, 6, 8])
Y = np.array([1, 3, 5, 7])# Mean of X and Y
mean_X = np.mean(X)
mean_Y = np.mean(Y)# Covariance Calculation
covariance = np.sum((X - mean_X) * (Y - mean_Y)) / (len(X) - 1)print(f"Covariance: {covariance}")
协方差:6.6666666666666667
示例 2:相关性计算
使用相同的变量 X 和 Y,我们计算它们的相关性。
用于关联的 Python 代码:
# Data
X = np.array([2, 4, 6, 8])
Y = np.array([1, 3, 5, 7])# Standard deviations of X and Y
std_X = np.std(X, ddof=1)
std_Y = np.std(Y, ddof=1)# Correlation Calculation
correlation = covariance / (std_X * std_Y)print(f"Correlation: {correlation}")
相关性:1.00000000000000002
使用库进行协方差和相关性:
我们还可以使用该库直接计算协方差和相关性:numpy
# Covariance Matrix
cov_matrix = np.cov(X, Y)
print(f"Covariance Matrix:\n{cov_matrix}")
print()# Correlation Matrix
corr_matrix = np.corrcoef(X, Y)
print(f"Correlation Matrix:\n{corr_matrix}")
这是上述代码的输出:
图 1.协方差和相关性的输出
可视化数据有助于了解变量之间的关系。
import matplotlib.pyplot as pltplt.scatter(X, Y)
plt.title("Scatter Plot of X and Y")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
这是上述代码的输出:
图 3.X 和 Y 的散点图
三、有关关联的高级主题 (有关详细信息)
3.1 相关性和独立性
-
独立性的定义
如果一个变量的出现不会影响另一个变量的出现,则两个变量 X 和 Y 是独立的。从数学上讲,如果满足以下条件,X 和 Y 是独立的: -
相关性和独立性
独立性意味着零相关性:如果两个变量是独立的,则它们的相关性为零。然而,反之则不一定是正确的。
零相关性并不意味着独立性:两个变量的相关性可以为零,但仍以非线性方式相关。
3.2 零相关性和依赖性示例
将 X 视为 [−1, 1] 上的均匀分布随机变量,并设 Y=X²。在这里,X 和 Y 不是线性相关的(相关性为零),但它们显然是相关的(因为 Y 由 X 决定)。
import numpy as np
import matplotlib.pyplot as plt# Generating data
X = np.random.uniform(-1, 1, 1000)
Y = X ** 2# Calculating correlation
correlation = np.corrcoef(X, Y)[0, 1]plt.scatter(X, Y)
plt.title(f"Correlation between X and Y is: {correlation:.4}")
plt.xlabel('X')
plt.ylabel('Y');
输出:
图 4. 零相关性和依赖性
四、相关性和因果关系
-
因果关系的定义
因果关系意味着一个变量的变化直接导致另一个变量的变化。建立因果关系需要的不仅仅是观察相关性;它需要对照实验或纵向研究。 -
相关性并不意味着因果关系
仅仅因为两个变量相关并不意味着一个变量导致另一个变量。相关性可能是由于:
巧合:变量是偶然相关的。
混杂变量:另一个变量影响这两个变量。
无因果关系的相关性示例
有研究表明,在某些地区,鹳的数量与人类出生率呈正相关!这种相关性可能会导致人们错误地得出鹳鸟接生婴儿的结论。然而,这种相关性背后的实际原因在于,较高的鹳数量和较高的出生率都与农村地区有关,而不是鹳和婴儿之间的因果关系。
图 5. 鹳和人类出生率
详细说明
鹳:一个区域中的鹳数量。
出生率:一个地区的人类出生人数。
农村:混杂变量。与城市地区相比,农村地区的鹳鸟数量和出生率往往更高。
Python 示例
让我们模拟数据来说明这个例子。
import numpy as np
import pandas as pd# Data generation
np.random.seed(42)
num_villages = 100
villages = np.arange(1, num_villages + 1)
stork_population = np.random.poisson(lam=30, size=num_villages) # Simulating stork population
birth_rate = 0.5 * stork_population + np.random.normal(scale=5, size=num_villages) # Birth rate influenced by stork population# Creating DataFrame
data = pd.DataFrame({'Village': villages,'Stork Population': stork_population,'Birth Rate': birth_rate
})# Correlation calculation
correlation = np.corrcoef(data['Stork Population'], data['Birth Rate'])[0, 1]print(f"Correlation between Stork Population and Birth Rate: {correlation:.2f}")
鹳鸟种群与出生率的相关性:0.38
让我们可视化它以便更好地理解:
import matplotlib.pyplot as pltplt.scatter(data['Stork Population'], data['Birth Rate'])
plt.title('Stork Population vs. Birth Rate')
plt.xlabel('Stork Population')
plt.ylabel('Birth Rate')
plt.show()
输出:
图 6. 鹳鸟种群与出生率
结果说明
正相关:计算将显示鹳鸟种群与出生率之间的正相关关系。
误解:如果不了解上下文,人们可能会错误地认为鹳是导致出生率增加的原因。
混杂变量:实际上,较高的鹳鸟数量和出生率在农村地区都是典型的,这是导致观察到的相关性的潜在因素。
此示例强调两个变量之间的相关性并不意味着直接的因果关系。可能还有其他潜在因素(混杂变量)有助于观察到的相关性。因此,在得出有关因果关系的结论之前,仔细分析和考虑所有可能的因素是必不可少的。
五、结论
在机器学习系列的第 31 天,我们深入研究了协方差和相关性的基本统计概念。通过实际的 Python 示例,我们演示了如何计算和解释这些指标,强调了区分相关性和因果关系的重要性,并了解混杂变量的作用。
保持好奇心,继续探索!您迈出的每一步都让您更接近掌握机器学习的艺术和科学。不要错过这个激动人心的旅程的下一章!
相关文章:
ML 系列:第 31 节— 机器学习中的协方差和相关性
文章目录 一、说明二、协方差和相关性2.1 协方差的概念2.1 相关 三、有关关联的高级主题 (有关详细信息)3.1 相关性和独立性3.2 零相关性和依赖性示例 四、相关性和因果关系五、结论 一、说明 协方差量化了两个随机变量协同变化的程度。当一个变量的较高…...
【鸿蒙】鸿蒙开发过程中this指向问题
文章目录 什么是 this?常见 this 指向问题案例分析:HarmonyOS 组件中的 this 指向问题问题描述问题分析原因 解决方案:绑定 this 的正确方法方法一:使用箭头函数方法二:手动绑定 this 完整代码示例使用箭头函数使用 bi…...
d3-contour 生成等高线图
D3.js 是一个强大的 JavaScript 库,用于创建动态、交互式数据可视化。d3-contour 是 D3.js 的一个扩展模块,用于生成等高线图(contour plots)。 属性和方法 属性 x: 一个函数,用于从数据点中提取 x 坐标。y: 一个函…...
Ubuntu20.04离线安装全教程(包括DellR940重置Raid 5、安装Ubuntu、设置root、安装nvidia英伟达显卡驱动及设置防火墙白名单)
本文记录重装Ubuntu20.04的所有记录,从服务器磁盘阵列重新排列、Ubuntu 20.04系统安装、配置root权限、安装Nvidia显卡驱动以及设置防火墙白名单的全部操作。 每一部分参考的博客的出处会放置于段落末尾,表示感谢! 一、重置服务器磁盘阵列&…...
Spring Boot 3 集成 Spring Security(2)授权
文章目录 授权配置 SecurityFilterChain基于注解的授权控制自定义权限决策 在《Spring Boot 3 集成 Spring Security(1)》中,我们简单实现了 Spring Security 的认证功能,通过实现用户身份验证来确保系统的安全性。Spring Securit…...
【开篇】.NET开源 ORM 框架 SqlSugar 系列
01. 前言 ☘️ 1.1 什么是ORM? 对象-关系映射(Object-Relational Mapping,简称ORM),面向对象的开发方法是当今企业级应用开发环境中的主流开发方法,关系数据库是企业级应用环境中永久存放数据的主流数据存储系统。对…...
参加面试被问到的面试题
1.在程序中如何开启事务? 在Java中,使用JDBC(Java Database Connectivity)与数据库交互时,你可以使用Connection对象的setAutoCommit方法来控制事务。默认情况下,autoCommit是开启的,这意味着每…...
第29天:安全开发-JS应用DOM树加密编码库断点调试逆向分析元素属性操作
时间轴: 演示案例: JS 原生开发-DOM 树-用户交互 DOM:文档操作对象 浏览器提供的一套专门用来操作网页代码内容的功能,实现自主或用户交互动作反馈 安全问题:本身的前端代码通过 DOM 技术实现代码的更新修改ÿ…...
react 的路由功能
1. 安装依赖 pnpm add react-router-dom 2. 基本的路由设置(BrowserRouter) 在 main.tsx 入口文件中使用BrowserRouter组件来包裹整个应用。它会监听浏览器的 URL 变化。 import { StrictMode } from "react";import { createRoot } from …...
SurfaceFlinger学习之一:概览
SurfaceFlinger 是 Android 系统中负责合成和显示屏幕内容的关键系统服务,它运行在一个专用的进程中 (system/bin/surfaceflinger)。它的主要职责是将不同应用程序的绘制内容(即窗口或表面)组合起来,通过硬件抽象层(HA…...
Qt关于窗口一直调用paintEvent的踩坑实录
首先看以下代码: void ItemBlockWidget::paintEvent(QPaintEvent *ev) {// 先调用父类的 paintEvent 以执行默认绘制行为QWidget::paintEvent(ev);qDebug()<<"ItemBlockWidget重绘";QStyleOption opt;opt.initFrom(this);QPainter p(this);style()…...
C++11: STL之bind
C11: STL之bind 引言可调用对象的绑定绑定普通函数绑定静态函数绑定类成员函数绑定仿函数绑定Lambda 占位符std::placeholders的应用嵌套绑定参数重排序结合 STL 算法占位符传递到嵌套函数混合占位符与默认值复杂占位符组合 std::bind的原理std::bind 的设计思路简化实现示例 B…...
在线音乐播放器 —— 测试报告
自动化脚本源代码:Java: 利用Java解题与实现部分功能及小项目的代码集合 - Gitee.com 目录 前言 一、项目简介 1.项目背景 2.应用技术 (1)后端开发 (2)前端开发 (3)数据库 二、项目功能…...
等保测评讲解:安全管理中心
在数字化转型的背景下,网络安全的重要性愈发凸显,而作为中国边疆大省的黑龙江,其网络安全建设更是不可忽视。等保测评,即信息安全等级保护测评,是确保信息系统安全的关键环节。本文将详细讲解黑龙江等保测评中的安全管…...
vue3表单输入相关修饰符使用
在 Vue 3 中,.lazy、.number 和 .trim 是用于 v-model 指令的修饰符,它们可以帮助你在双向绑定时进行特定的处理。 1. .lazy 修饰符 .lazy 修饰符表示只在 input 事件之后触发更新,即输入框的内容发生变化后,只有在用户**失去焦…...
CSS笔记(二)类名复用
这里我通过两张不同位置的卡片来实现效果 代码 <!DOCTYPE html> <html><head><style>/*设置画布*/body{/* 方便排列与对齐*/display: flex; /*画布布满整个窗口*/height: 100vh;/*水平居中*/justify-content: center;/*垂直居中*/align-items: cente…...
TCP三次握手与四次挥手(TCP重传机制,2MSL)超详细!!!计算机网络
本篇是关于3次握手和四次挥手的详细解释~ 如果对你有帮助,请点个免费的赞吧,谢谢汪。(点个关注也可以!) 如果以下内容需要补充和修改,请大家在评论区多多交流~。 目录 1. TCP头部: 2. 三次握手…...
LCR 006. 两数之和 II - 输入有序数组
一.题目: LCR 006. 两数之和 II - 输入有序数组 - 力扣(LeetCode) 二.我的原始解法-暴力解法超时: class Solution: def twoSum(self, numbers: List[int], target: int) -> List[int]: # 暴力解法 result [] for i in rang…...
网络安全在现代企业中的重要作用
网络安全是这个数字时代最令人担忧的事情之一。对技术的依赖性越来越强,使其同时面临多种网络威胁。其声誉和法律后果的大幅下降可能归因于一次妥协。 这使得良好的网络安全成为所有企业的选择和必需品。本文介绍了网络安全的重要性、企业中常见的网络威胁以及公司…...
关于 EKS Bottlerocket AMI 版本与 Karpenter 配置的说明
问题1: Bottlerocket AMI 版本问题 之前,后端团队发现在使用 Bottlerocket v1.26.2 AMI 版本时,存在某些问题。经过 Bottlerocket 团队调查,此行为是罕见的 race condition 导致的结果。 我们在环境中重现了此状况,并且关注到由于 kubelet device manager 的启动时间晚于 NVI…...
Python实现人生重开模拟器
目录 人生重开模拟器介绍 代码实现 打印初始界面 设置初始属性 设置角色性别 设置角色出生点 针对每一岁,生成人生经历 完整代码 人生重开模拟器介绍 人生重开模拟器 是之前比较火的一个小游戏,我们这里使用 Python 实现一个简化版的 人生重开模…...
java——Spring Boot的配置加载顺序和优先级
Spring Boot的配置加载顺序和优先级是确定应用程序如何读取和应用配置的关键。以下是对Spring Boot配置加载顺序和优先级的详细解释: 一、配置加载顺序 命令行参数: Spring Boot会首先加载命令行中指定的参数。这些参数可以通过在命令行中使用--keyval…...
【21-30期】Java技术深度剖析:从分库分表到微服务的核心问题解析
🚀 作者 :“码上有前” 🚀 文章简介 :Java 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 文章题目:Java技术深度剖析:从分库分表到微服务的核心问题解析 摘要: 本…...
CSS:怎么把网站都变成灰色
当大家看到全站的内容都变成了灰色,包括按钮、图片等等。这时候我们可能会好奇这是怎么做到的呢? 有人会以为所有的内容都统一换了一个 CSS 样式,图片也全换成灰色的了,按钮等样式也统一换成了灰色样式。但你想想这个成本也太高了…...
开发一个基于MACOS M1/2芯片的Android 12的模拟器
产品需求:MuMu模拟器Pro_率先适配Apple M系列芯片的安卓模拟器 苹果M芯片专属:产品专为苹果M系列芯片设计,意味着它需要能够充分利用M系列芯片的性能优势。 安卓模拟器:产品是一个安卓模拟器,允许用户在Mac设备上运行…...
Flink 中 JDBC Connector 使用详解
1. 背景 在实时计算或离线任务中,往往需要与关系型数据库交互,例如 MySQL、PostgreSQL 等。Apache Flink 提供了 JDBC Connector,可以方便地将流式数据写入或读取数据库。 本文将介绍 Flink JDBC Connector 的基础用法、配置方法以及注意事…...
【Linux打怪升级记 | 报错02】-bash: 警告:setlocale: LC_TIME: 无法改变区域选项 (zh_CN.UTF-8)
🗺️博客地图 📍1、报错发现 📍2、原因分析 📍3、解决办法 📍4、测试结果 1、报错发现 装好了CentOS操作系统,使用ssh远程登陆CentOS,出现如下告警信息: bash: 警告:setlocale…...
未来已来?AI技术革新改变我们的生活
在21世纪的今天,人工智能(AI)不再是一个遥远的概念,而是逐渐渗透到我们生活的方方面面。从智能家居到自动驾驶汽车,从个性化推荐系统到医疗诊断辅助,AI技术正在以惊人的速度发展,并深刻地影响着…...
【Linux】进程的生命之旅——诞生、消逝与守候(fork/exit/wait)
🎬 个人主页:谁在夜里看海. 📖 个人专栏:《C系列》《Linux系列》《算法系列》 ⛰️ 一念既出,万山无阻 目录 📖一、进程创建 1.fork函数 📚高层封装特性 📚fork返回值 2.写时拷…...
使用vcpkg自动链接tinyxml2时莫名链接其他库(例如boost)
使用vcpkg自动链接tinyxml2时莫名链接其他库(例如boost) vcpkg的自动链接功能非常方便,但在某些情况下会出现过度链接的问题。 链接错误症状 以tinyxml2为例,程序中调用tinyxml2的函数后,若vcpkg中同时存在opencv和…...
做报价在哪个网站询价/在线外链
一、 Grid a. 单元格的宽度可以设置三类值 绝对值:double数值加单位后缀 比例值:double数值加一个星号* 自动值: auto,高度将有内部的控件的高度和宽度决定。 b. Grid可接受的宽度和高度的单位 1in96px 1cm(96/2.54)px 1pt(96/72) px c. 示例 123456789…...
公众号开发者密码忘了怎么办/杭州seo招聘
方星星 吕永强摘 要 C语言的基本数据类型分为:整型、字符型和浮点型,大多C语言教材都概括了整型和字符型数据的编码及输入输出,但并未详细介绍浮点型数据的编码及输入输出,这导致很多学生不能灵活运用这一知识点。本文为了弥补教…...
网站模板备份/对搜索引擎优化的认识
这是一个让我很头痛的问题,我是在一个其他的项目框架的基础上来开发新的项目。 当使用struts验证框架时,突然发现这个验证不起作用了,我就纳闷了之前用这个开发的项目好好的怎么到我这就不能用了呢? xml文件头 <?xml version&…...
北京 网站建设 知乎/百度指数的各项功能
关于UIWebView不能响应touchesBegan等四个方法的解决案例 做的APP需要在一个UIWebView中随点击位置动态出现button,用touchesBegan等怎么调试都不行,普通的UIView就可以,找了半天终于知道UIWebView不能这样用,那么怎么做呢&#x…...
网站做很多关键词/总裁班课程培训
现在都有手机了,办公人员有时需要在手机上识别文字,手机如何识别文字并翻译?其实传图识别很简单,只需要上传图片就可以。这里分享技巧。 1、在手机上点击搜索该迅捷PDF阅读器,然后开始翻译文本。 2、下载打开之后就是这…...
商场设计分析/鹤岗网站seo
信息交换 主要有一下几种: 书面或口头形式正式或非正式形式手势和动作媒体遣词造句 有效的沟通活动和工件创建具有如下基本属性: 沟通目的明确尽量了解沟通接收方,满足其需求及偏好监督并衡量沟通的效果 沟通活动可以根据如下维度进行分类…...