当前位置: 首页 > news >正文

探索空间自相关:揭示地理数据中的隐藏模式

目录

一、什么是空间自相关?

    类型

二、空间自相关的数学基础

    空间加权矩阵

三、度量空间自相关的方法

    1. 全局自相关

    2. 局部自相关

四、空间自相关的实际应用

五、Python实现空间自相关分析

    1. 数据准备

    2. 计算莫兰指数

    3. 局部自相关(LISA 分析)

六、总结


        本文将详细介绍空间自相关的概念、数学基础、常见的度量方法及实际应用,最后通过Python代码展示如何进行空间自相关分析。


一、什么是空间自相关?

        空间自相关用来衡量地理空间中数据值的相似性或相关性。它的核心思想是:“相邻地区的事物往往更相似”。这一思想来源于托布勒的第一地理学定律(Tobler's First Law of Geography):

“一切事物都是相关的,但近的事物比远的事物更相关。”

    类型
  1. 正空间自相关:相邻区域具有相似的值。例如,城市中的富人区与相邻地区的收入水平通常较高。
  2. 负空间自相关:相邻区域具有相反的值。例如,工业区与周围居民区的空气质量可能存在负相关。
  3. 无空间自相关:空间分布随机,没有明确的模式。

二、空间自相关的数学基础

        空间自相关通过“空间加权矩阵(Spatial Weight Matrix)”和统计方法进行量化。

    空间加权矩阵 W
  • 用于定义区域之间的空间关系,常见方式包括:
    1. 邻接矩阵:两个区域是否直接相邻。
    2. 距离矩阵:两个区域之间的地理距离。
    3. K最近邻矩阵:基于最近的 k 个邻居。

        一个常见的矩阵形式是 W_{ij} = 1(如果区域 ij 相邻),否则 W_{ij} = 0


三、度量空间自相关的方法

    1. 全局自相关

        全局指标用于衡量整个研究区域的自相关性。

  • 莫兰指数(Moran’s I)

        莫兰指数是最常用的全局空间自相关指标,其公式为:

I = \frac{N \sum_{i} \sum_{j} W_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i} (x_i - \bar{x})^2 \sum_{i} \sum_{j} W_{ij}}

  • N:样本数量
  • x_i:第 iii 个区域的观测值
  • \bar{x}:观测值的平均值
  • W_{ij}:空间权重

    取值范围:

  • I > 0:正自相关

  • I < 0:负自相关

  • I = 0:无自相关

  • Geary's C 另一个全局指标,敏感于局部差异。

    2. 局部自相关

        局部指标用于分析具体区域的自相关性。

  • 局部莫兰指数(LISA) 局部莫兰指数用来检测局部热点(hotspot)或冷点(coldspot)。

I_i = \frac{x_i - \bar{x}}{s^2} \sum_{j} W_{ij} (x_j - \bar{x})

  • Getis-Ord Gi*指数 用来识别空间中具有统计显著性的热点和冷点。

四、空间自相关的实际应用

  1. 城市规划

    • 分析城市热岛效应分布,指导绿色区域规划。
    • 房地产价格分布模式识别,优化土地利用。
  2. 生态与环境

    • 森林分布的空间格局分析,发现生态敏感区域。
    • 空气质量的空间分布,找出污染热点。
  3. 流行病学

    • 传染病的空间扩散研究,识别疫情的聚集区。
  4. 社会经济分析

    • 贫富差距、犯罪率等的空间分布分析。

五、Python实现空间自相关分析

        以下是使用 pysal 库进行莫兰指数计算的示例:

    1. 数据准备

        安装必要库:

pip install pysal geopandas

        加载空间数据:

import geopandas as gpd
from pysal.lib.weights.contiguity import Queen
from pysal.explore.esda.moran import Moran
import matplotlib.pyplot as plt# 加载地理数据(以 GeoJSON 文件为例)
data = gpd.read_file("data.geojson")# 选取分析变量
variable = data["population_density"]# 生成邻接矩阵(基于 Queen 邻接规则)
weights = Queen.from_dataframe(data)
weights.transform = 'r'

    2. 计算莫兰指数

# 计算全局莫兰指数
moran = Moran(variable, weights)
print(f"Moran's I: {moran.I}, p-value: {moran.p_sim}")

    3. 局部自相关(LISA 分析)

from pysal.explore.esda.moran import Moran_Local# 计算局部莫兰指数
lisa = Moran_Local(variable, weights)# 可视化 LISA 热点
data["LISA"] = lisa.q
data.plot(column="LISA", legend=True, cmap="coolwarm")
plt.title("LISA Cluster Map")
plt.show()

六、总结

        空间自相关为我们揭示了数据在空间上的内在结构和规律,通过全局和局部指标,我们可以洞察区域之间的相似性或差异性。在城市规划、环境监测和社会经济研究中,空间自相关分析提供了科学的依据。

        Python 的 pysal 库使得空间分析的实现变得简单直观。通过本博客的介绍和代码示例,你可以尝试将空间自相关应用于实际项目中,探索地理数据的隐藏模式!

相关文章:

探索空间自相关:揭示地理数据中的隐藏模式

目录 一、什么是空间自相关&#xff1f; 类型 二、空间自相关的数学基础 空间加权矩阵 三、度量空间自相关的方法 1. 全局自相关 2. 局部自相关 四、空间自相关的实际应用 五、Python实现空间自相关分析 1. 数据准备 2. 计算莫兰指数 3. 局部自相关&#xff08;LISA 分析&…...

echarts使用示例

柱状图折线图 折柱混合&#xff1a;https://echarts.apache.org/examples/zh/editor.html?cmix-line-bar option {title:{show: true},tooltip: {trigger: axis,axisPointer: {type: cross,crossStyle: {color: #999}}},toolbox: {feature: {dataView: { show: true, readOnl…...

Flink高可用配置(HA)

从Flink架构中我们可以看到,JobManager这个组件非常重要,是中心协调器,负责任务调度和资源管理。默认情况下,每个Flink集群只有一个JobManager实例。这会产生单点故障(SPOF):如果JobManager崩溃,则无法提交新程序,正在运行的程序也会失败。通过JobManager的高可用性,…...

如何编写出色的技术文档

目录 ​编辑 1. 明确文档目的和受众 目的的重要性 了解受众 2. 收集和组织信息 信息收集的技巧 组织信息 3. 规划文档结构 结构规划的重要性 结构规划的步骤 4. 编写内容 语言和风格 内容的组织 编写技巧 5. 审阅和测试 审阅的重要性 测试的必要性 6. 版本控…...

学习日记_20241126_聚类方法(谱聚类Spectral Clustering)

前言 提醒&#xff1a; 文章内容为方便作者自己后日复习与查阅而进行的书写与发布&#xff0c;其中引用内容都会使用链接表明出处&#xff08;如有侵权问题&#xff0c;请及时联系&#xff09;。 其中内容多为一次书写&#xff0c;缺少检查与订正&#xff0c;如有问题或其他拓展…...

图书系统小案例

目前就实现了分页查询&#xff0c;修改&#xff0c;删除功能 这个小案例练习到了很多技能&#xff0c;比如前后端交互、异步请求、三层架构思想、后端连接数据库、配置文件、基础业务crud等等 感兴趣的小伙伴可以去做一个试试 准备工作 1、使用maven构建一个web工程 打开i…...

目标检测之学习路线(本科版)

以下是为一名计算机科学与技术本科大四学生整理的“目标检测”学习路线&#xff0c;结合了从基础到高级的内容&#xff0c;适合初学者逐步深入。每个阶段都有明确的学习要求、学习建议和资源推荐。 阶段一&#xff1a;基础知识学习 学习要求&#xff1a; 掌握编程语言 Pytho…...

C#调用C++ DLL方法之C++/CLI(托管C++)

托管C与C/CLI前世今生 C/CLI (C/Common Language Infrastructure) 是一种用于编写托管代码的语言扩展&#xff0c;它是为了与 .NET Framework 进行互操作而设计的。C/CLI 是 C 的一种方言&#xff0c;它引入了一些新的语法和关键字&#xff0c;以便更好地支持 .NET 类型和垃圾…...

免费搭建一个属于自己的个性化博客(Hexo+Fluid+Github)

文章目录 0.简介1. 下载安装fluid主题2. 创建文章3. 添加分类及标签3.1 创建“分类”选项3.2 创建“标签”选项4. 文章中插入图片5. 添加阅读量统计6. 添加评论功能7. 显示文章更新时间8. 为hexo添加latex支持小结参考文献0.简介 通过HEXO模板和Fluid主题搭建自己的博客,预览…...

vue3 开发利器——unplugin-auto-import

这玩意儿是干啥的&#xff1f; 还记得 Vue 3 的组合式 API 语法吗&#xff1f;如果有印象&#xff0c;那你肯定对以下代码有着刻入 DNA 般的熟悉&#xff1a; 刚开始写觉得没什么&#xff0c;但是后来渐渐发现&#xff0c;这玩意儿几乎每个页面都有啊&#xff01; 每次都要写…...

开发需求总结19-vue 根据后端返回一年的数据,过滤出符合条件数据

需求描述&#xff1a; 定义时间分界点&#xff1a;每月26号8点&#xff0c;过了26号8点则过滤出data数组中符合条件数据下个月的数据&#xff0c;否则过滤出当月数据 1.假如现在是2024年11月14日&#xff0c;那么过滤出data数组中日期都是2024-11月的数据&#xff1b; 2.假如…...

人工智能如何改变创新和创造力?

王琼工作室 输出的力量 有了GPT这样的人工智能平台&#xff0c;创新和创造力的机会在哪里&#xff1f; 我们是否有信心&#xff1a; 面对效率&#xff0c;超越效率。 把问题拓展为机会&#xff1f; 把机会拓展为价值&#xff1f; 让智能更好地和我们协作&#xff0c;走心、走…...

Github 基本使用学习笔记

1. 基本概念 1.1 一些名词 Repository&#xff08;仓库&#xff09; 用来存放代码&#xff0c;每个项目都有一个独立的仓库。 Star&#xff08;收藏&#xff09; 收藏你喜欢的项目&#xff0c;方便以后查看。 Fork&#xff08;克隆复制项目&#xff09; 复制别人的仓库&…...

群论入门笔记

群的基本定义 群由一组元素 G 和一个运算&#xff08;常用符号包括 &#xff0c;x , 或 ∗&#xff09;组成。 封闭性 对于任意两个元素 x,y∈G&#xff0c;运算 x * y 的结果仍然属于集合 G&#xff0c;即&#xff1a; ∀x,y∈G,x∗y∈G. 结合律 对于任意 a,b,c∈G&…...

2024最新python使用yt-dlp

2024最新python使用yt-dlp下载YT视频 1.获取yt的cookie1&#xff09;google浏览器下载Get cookies.txt LOCALLY插件2&#xff09;导出cookie 2.yt-dlp下载[yt-dlp的GitHub地址](https://github.com/yt-dlp/yt-dlp?tabreadme-ov-file)1&#xff09;使用Pycharm(2024.3)进行代码…...

Python + 深度学习从 0 到 1(00 / 99)

希望对你有帮助呀&#xff01;&#xff01;&#x1f49c;&#x1f49c; 如有更好理解的思路&#xff0c;欢迎大家留言补充 ~ 一起加油叭 &#x1f4a6; 欢迎关注、订阅专栏 【深度学习从 0 到 1】谢谢你的支持&#xff01; ⭐ 什么是深度学习&#xff1f; 人工智能、机器学习与…...

单点登录深入详解之设计方案总结

基于cookie的单点登录解决方案 概述 用户登录之后 , 将认证信息存储至 Cookie &#xff0c;当再次访问本服务或者访问其他应用服务时&#xff0c;直接从 Cookie 中传递认证信息&#xff0c;进行鉴权处理。 问题 1. 如何保障Cookie内用户认证信息的安全性? 第一, Cookie…...

Loadsh源码分析-forEach,eachRight,map,flatMap,flatMapDeep,flatMapDepth

处理数组array的函数已经学习完&#xff0c;接下来是collection相关的函数&#xff0c; collection指的是一组用于处理集合&#xff08;如数组或对象&#xff09;的工具函数。 lodash源码研读之forEach,forEachRight,map,flatMap,flatMapDeep,flatMapDepth 一、源码地址 GitH…...

检测到“runtimelibrary”的不匹配项: 值“mtd_staticdebug”不匹配值“mdd_dynamic”

1. 解释“runtimelibrary”不匹配错误的含义 在Visual Studio中&#xff0c;LNK2038错误表示链接器检测到项目与其依赖的库之间存在“Runtime Library”&#xff08;运行时库&#xff09;的不匹配。具体来说&#xff0c;这意味着编译项目时使用的运行时库类型与编译依赖库时使…...

go clean -modcache命令清理缓存

go clean -modcache命令用于清理Go模块的本地缓存。Go模块缓存位于$GOPATH/pkg/mod/cache目录下&#xff0c;存储了所有下载和使用的模块版本。当执行go clean -modcache时&#xff0c;这个命令会删除该目录下的所有内容&#xff0c;迫使Go在下次构建时重新下载所有依赖的模块。…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...