当前位置: 首页 > news >正文

Flink 热存储维表 使用 Guava Cache 减轻访问压力

目录

背景

Guava Cache 简介

实现方案

1. 项目依赖

(1) 定义 Cache

(2) 使用 Cache 优化维表查询

3. 应用运行效果

(1) 维表查询逻辑优化

(2) 减少存储压力

Guava Cache 配置优化

总结


背景

在实时计算场景中,Flink 应用中经常需要通过维表进行维度数据的关联。为了保证关联的实时性,常将维表数据存储在 Redis 或数据库中。然而,这种方案可能会因高频访问导致存储压力过大,甚至出现性能瓶颈。

为了解决这个问题,可以在 Flink 中引入本地缓存。本文介绍如何通过 Google 的开源库 Guava Cache,实现对热存储维表访问的优化。


Guava Cache 简介

Guava Cache 是 Google 开发的一个 Java 缓存工具库,具有以下优点:

  1. 支持本地缓存,提升查询性能。
  2. 提供缓存淘汰策略(如基于时间或容量)。
  3. 线程安全,适合高并发场景。
  4. 提供监听机制,可在缓存失效时触发回调。

实现方案

1. 项目依赖

在 Maven 项目中引入 Guava 依赖:

<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>31.1-jre</version>
</dependency>

以下是一个典型的实现步骤:

(1) 定义 Cache

使用 Guava 提供的 CacheBuilder 创建一个本地缓存:

import com.google.common.cache.Cache;
import com.google.common.cache.CacheBuilder;import java.util.concurrent.TimeUnit;public class CacheUtil {private static final Cache<String, String> DIM_CACHE = CacheBuilder.newBuilder().maximumSize(10000) // 最大缓存数量.expireAfterWrite(10, TimeUnit.MINUTES) // 缓存过期时间.build();public static String getFromCache(String key) {return DIM_CACHE.getIfPresent(key);}public static void putToCache(String key, String value) {DIM_CACHE.put(key, value);}
}
(2) 使用 Cache 优化维表查询

在自定义的 RichFlatMapFunction 中使用缓存查询维表数据:

import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.util.Collector;public class DimensionJoinFunction extends RichFlatMapFunction<String, String> {@Overridepublic void open(Configuration parameters) throws Exception {// 初始化连接到 Redis 或其他外部存储}@Overridepublic void flatMap(String value, Collector<String> out) throws Exception {String dimKey = extractKey(value);// 1. 先查询缓存String dimValue = CacheUtil.getFromCache(dimKey);// 2. 如果缓存未命中,再查询外部存储if (dimValue == null) {dimValue = queryFromExternalStorage(dimKey);if (dimValue != null) {CacheUtil.putToCache(dimKey, dimValue); // 写入缓存}}// 3. 关联维度数据if (dimValue != null) {String result = enrichData(value, dimValue);out.collect(result);}}private String extractKey(String value) {// 从输入数据中提取维表关联键return value.split(",")[0];}private String queryFromExternalStorage(String key) {// 模拟查询 Redis 或数据库return "mock_value_for_" + key;}private String enrichData(String input, String dimValue) {// 组合维度数据return input + "," + dimValue;}
}

3. 应用运行效果

(1) 维表查询逻辑优化
  • 缓存命中时:直接返回缓存数据,访问延迟为纳秒级。
  • 缓存未命中时:查询外部存储,并将结果写入缓存,后续重复访问相同的 Key 时不再查询外部存储。
(2) 减少存储压力

Guava Cache 本地缓存避免了大量高频查询直接命中外部存储,降低了 Redis、MySQL 等服务的负载。


Guava Cache 配置优化

  1. 缓存淘汰策略

    • expireAfterWrite:基于写入时间自动过期。
    • expireAfterAccess:基于访问时间自动过期。
    • maximumSize:限制最大缓存数量,避免内存占用过高。
  2. 异步加载机制: 如果需要异步加载数据,可以使用 CacheLoader,在缓存未命中时自动加载:

    Cache<String, String> cache = CacheBuilder.newBuilder().maximumSize(10000).build(new CacheLoader<String, String>() {@Overridepublic String load(String key) throws Exception {return queryFromExternalStorage(key);}});
  3. 监控与统计: 使用 Cache.stats() 查看缓存命中率等统计数据,便于优化缓存策略。


总结

通过在 Flink 中引入 Guava Cache,可以显著降低热存储维表的访问压力,提升系统性能。
这种方案适用于维表数据更新频率较低,且查询热点相对集中的场景

相关文章:

Flink 热存储维表 使用 Guava Cache 减轻访问压力

目录 背景 Guava Cache 简介 实现方案 1. 项目依赖 2. Guava Cache 集成到 Flink (1) 定义 Cache (2) 使用 Cache 优化维表查询 3. 应用运行效果 (1) 维表查询逻辑优化 (2) 减少存储压力 Guava Cache 配置优化 总结 背景 在实时计算场景中&#xff0c;Flink 应用中…...

深入探索SenseVoiceSmall:高效多语言语音识别与处理模型

引言 随着人工智能技术的飞速发展&#xff0c;语音识别技术已经广泛应用于智能助手、客户服务、智能家居等多个领域。然而&#xff0c;现有的语音识别模型往往存在资源消耗大、多语言支持不足等问题。今天&#xff0c;我们要介绍的是来自ModelScope平台的SenseVoiceSmall模型&…...

Flink--API 之Transformation-转换算子的使用解析

目录 一、常用转换算子详解 &#xff08;一&#xff09;map 算子 &#xff08;二&#xff09;flatMap 算子 &#xff08;三&#xff09;filter 算子 &#xff08;四&#xff09;keyBy 算子 元组类型 POJO &#xff08;五&#xff09;reduce 算子 二、合并与连接操作 …...

每日十题八股-2024年11月27日

1.类型互转会出现什么问题吗&#xff1f; 2.为什么用bigDecimal 不用double &#xff1f; 3.装箱和拆箱是什么&#xff1f; 4.Java为什么要有Integer&#xff1f; 5.Integer相比int有什么优点&#xff1f; 6.那为什么还要保留int类型&#xff1f; 7.说一下 integer的缓存 8.怎么…...

OpenCV截取指定图片区域

import cv2 img cv2.imread(F:/2024/Python/demo1/test1/man.jpg) cv2.imshow(Image, img) # 显示图片 #cv2.waitKey(0) # 等待按键x, y, w, h 500, 100, 200, 200 # 示例坐标 roi img[y:yh, x:xw] # 截取指定区域 cv2.imshow(ROI, roi) cv2.waitKey(0) cv…...

Java部分新特性

模式匹配 instance of 模式匹配 之前写法 public void print(Object o) {if (o instanceof String){String str (String) obj;System.out.println("This is a String of length " s.length());} else {System.out.println("This is not a String");} …...

【SpringBoot】28 API接口防刷(Redis + 拦截器)

Gitee仓库 https://gitee.com/Lin_DH/system 介绍 常用的 API 安全措施包括&#xff1a;防火墙、验证码、鉴权、IP限制、数据加密、限流、监控、网关等&#xff0c;以确保接口的安全性。 常见措施 1&#xff09;防火墙 防火墙是网络安全中最基本的安全设备之一&#xff0c…...

IT运维专家给年轻人一些职业上的建议

运维工作在现代企业中是非常重要的一环,保证系统的稳定性、可用性以及安全性对企业的正常运营至关重要。以下是我给年轻人的一些职业发展建议,希望能够帮助你们在运维领域找到方向并取得成功。 1. 夯实基础,扎实技术功底 精通操作系统与网络:运维工作需要深入理解操作系统…...

Django基础之路由

一.前言 前面我们说了django的安装于基础配置&#xff0c;基础知识点我就细分下来&#xff0c;每天和大家讲一点&#xff0c;今天就要和大家说django的基础知识点了&#xff0c;我们今天先来讲路由&#xff0c;内容不多&#xff0c;希望大家记住 二.传统路由 路由就是前面一个…...

Python实例化中默认值的行为及应用

Python实例化中默认值的行为及应用 适合初学者阅读 本文要点 使用可变对象作为默认参数会导致所有实例共享同一对象&#xff0c;引发意外的数据修改。不可变对象作为默认参数时&#xff0c;每次实例化都会创建新的对象&#xff0c;不会共享数据。推荐使用None作为默认值&…...

【WRF后处理】WRF模拟效果评价及可视化:MB、RMSE、IOA、R

【WRF后处理】模拟效果评价及可视化 准备工作模型评价指标Python实现代码Python处理代码:导入站点及WRF模拟结果可视化图形及评价指标参考在气象和环境建模中(如使用 WRF 模型进行模拟),模型性能评价指标是用于定量评估模拟值与观测值之间偏差和拟合程度的重要工具。 本博客…...

ShenNiusModularity项目源码学习(4:身份认证)

ShenNiusModularity项目有两套启动方式&#xff0c;一种是ShenNius.Admin.Mvc项目启动&#xff0c;该项目为MVC模式&#xff0c;带前台页面&#xff0c;也有后台服务&#xff0c;另一种是ShenNius.Admin.Hosting&#xff0c;该项目启动后仅提供后台服务&#xff0c;供其它前台项…...

python+django自动化部署日志采用‌WebSocket前端实时展示

一、开发环境搭建和配置 # channels是一个用于在Django中实现WebSocket、HTTP/2和其他异步协议的库。 pip install channels#channels-redis是一个用于在Django Channels中使用Redis作为后台存储的库。它可以用于处理#WebSocket连接的持久化和消息传递。 pip install channels…...

flink学习(6)——自定义source和kafka

概述 SourceFunction:非并行数据源(并行度只能1) --接口 RichSourceFunction:多功能非并行数据源(并行度只能1) --类 ParallelSourceFunction:并行数据源(并行度能够>1) --接口 RichParallelSourceFunction:多功能并行数据源(并行度能够>1) --类 【建议使用的】 ——…...

开发常见问题及解决

1.DBeaver 报Public Key Retrieval is not allowed 在使用DBeaver连接数据库时出现“Public Key Retrieval is not allowed”错误&#xff0c;主要是因为数据库连接配置的安全策略导致的。以下是详细的解释和解决方法&#xff1a; 错误原因 这个错误通常出现在连接MySQL数据…...

python excel接口自动化测试框架!

今天采用Excel继续写一个接口自动化测试框架。 设计流程图 这张图是我的excel接口测试框架的一些设计思路。 首先读取excel文件&#xff0c;得到测试信息&#xff0c;然后通过封装的requests方法&#xff0c;用unittest进行测试。 其中&#xff0c;接口关联的参数通过正则进…...

mybatis:You have an error in your SQL syntax;

完整报错You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near false, false, false, false, false, false, false, false, false, false, false, at line 1 SQL: INSERT INTO user …...

使用 Maven 开发 IntelliJ IDEA 插件

使用 Maven 开发 IntelliJ IDEA 插件的完整流程 1. 创建 Maven 项目 1.1 使用 IntelliJ 创建 Maven 项目 打开 IntelliJ IDEA&#xff0c;点击 File > New > Project。选择 Maven&#xff0c;填写项目名称和 GroupId&#xff0c;例如&#xff1a; GroupId: com.exampl…...

Windows修复SSL/TLS协议信息泄露漏洞(CVE-2016-2183) --亲测

漏洞说明&#xff1a; 打开链接&#xff1a;https://docs.microsoft.com/zh-cn/troubleshoot/windows-server/windows-security/restrict-cryptographic-algorithms-protocols-schannel 可以看到&#xff1a; 找到&#xff1a;应通过配置密码套件顺序来控制 TLS/SSL 密码 我们…...

uniapp生命周期:应用生命周期和页面生命周期

文章目录 1.应用的生命周期2.页面的生命周期 1.应用的生命周期 生命周期的概念&#xff1a;一个对象从创建、运行、销毁的整个过程被称为生命周期 生命周期函数&#xff1a;在生命周期中每个阶段会伴随着每一个函数的出发&#xff0c;这些函数被称为生命周期函数 所有页面都…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...