《图像形态学运算全解析:原理、语法及示例展示》
简介: 本文详细介绍了图像形态学中的多种运算,包括腐蚀、膨胀、开运算、闭运算、形态学梯度运算、礼帽运算以及黑帽运算。分别阐述了各运算的原理、语法格式,并通过 Python 代码结合具体示例图片(如erode.JPG、dilate.JPG、close.JPG等)展示了各运算的实际效果及对图像产生的改变,帮助读者理解这些图像形态学运算在图像处理中的应用。
如果您觉得我的文章对您有帮助,请您点赞收藏关注,我会持续为您带来更多跟OpenCV相关的文章。
《图像形态学运算全解析:原理、语法及示例展示》
- 1 腐蚀
- 2 膨胀
- 3 开运算
- 4 闭运算
- 5 形态学梯度运算
- 6 礼帽运算
- 黑帽运算
- 致谢
1 腐蚀
腐蚀的原理如下:
语法如下:
dst = cv2.erode(原始图像src,黑色方块的大小kernel,anchor锚点 ,iterations迭代次数默认为1,borderType边界样式一般不修改)
用下面这张图做例子,这张图片在我的jupyter notebook文件夹下起名erode.JPG,这是我的文件夹结构,用pycharm一样和代码放在同一个文件夹下就好:
import numpy as np
import cv2
image = cv2.imread("erode.JPG")
kernel = np.ones((5,5),dtype = np.uint8)
erode_image = cv2.erode(src = image , kernel = kernel )
cv2.imshow("original",image)
cv2.imshow("erode",erode_image)
cv2.waitKey()
cv2.destroyAllWindows()
根据腐蚀的原理,当黑色方框(kernel)经过画红线的白色部分时,前景色是黑色,背景色是白色。所以被腐蚀成黑色。通过腐蚀实现了去噪
2 膨胀
膨胀的原理与腐蚀相反:
语法如下:
dst = cv2.dilate(原始图像src,扫描元kernel,iterations迭代次数)
我们用下面这张图做例子,他在我的文件夹下命名为dilate.JPG
import numpy as np
import cv2
image = cv2.imread("dilate.JPG")
kernel = np.ones((5,5),dtype = np.uint8)
di_image = cv2.dilate(src = image,kernel = kernel ,iterations = 8)
cv2.imshow("original",image)
cv2.imshow("di",di_image)
cv2.waitKey()
cv2.destroyAllWindows()
这张图经过8次膨胀,从左边变到了右边,很多背景色被膨胀成前景色,导致了Z字母的增大。
3 开运算
是先腐蚀后膨胀,腐蚀可以去掉一些噪声(多余的边角料),但是会导致形状缩小,膨胀又把形状变大。
语法:
dst = cv2.morphologyEx(原始图像src,op = cv2.MORPH_OPEN,黑色方块的大小kernel,anchor锚点 ,iterations迭代次数默认为1,borderType边界样式一般不修改)
使用erode.JPG这个例子来展示一下效果
import numpy as np
import cv2
image = cv2.imread("erode.JPG")
kernel = np.ones((5,5),dtype = np.uint8)
erode_image = cv2.erode(src = image , kernel = kernel ,iterations = 4)
di_image = cv2.dilate(src = erode_image , kernel = kernel ,iterations = 4)
open_image = cv2.morphologyEx(src = image ,kernel = kernel ,iterations = 4 , op = cv2.MORPH_OPEN)
cv2.imshow("original",image)
cv2.imshow("erode",erode_image)
cv2.imshow("di",di_image)
cv2.imshow("open",open_image)
cv2.waitKey()
cv2.destroyAllWindows()
4 闭运算
他和开运算相反,是先膨胀后腐蚀,他的作用是关闭前景图像中的小孔,比如下面这张图:
我把他命名为close.JPG存放在我的文件夹中:
import numpy as np
import cv2
image = cv2.imread("close.JPG")
kernel = np.ones((5,5),dtype = np.uint8)
di_image = cv2.dilate(src = image , kernel = kernel ,iterations = 4)
erode_image = cv2.erode(src = di_image , kernel = kernel ,iterations = 4)
close_image = cv2.morphologyEx(src = image ,kernel = kernel ,iterations = 4 , op = cv2.MORPH_CLOSE)
cv2.imshow("original",image)
cv2.imshow("erode",erode_image)
cv2.imshow("di",di_image)
cv2.imshow("close",close_image)
cv2.waitKey()
cv2.destroyAllWindows()
5 形态学梯度运算
他是膨胀-腐蚀,语法是把cv2.morphologyEx的op参数改为cv2.MORPH_GRANDIENT
还用close.JPG作为例子展示一下效果:
import numpy as np
import cv2
image = cv2.imread("close.JPG")
kernel = np.ones((7,7),dtype = np.uint8)
di_image = cv2.dilate(src = image , kernel = kernel )
erode_image = cv2.erode(src = di_image , kernel = kernel)
new = di_image-erode_image
Grad = cv2.morphologyEx(src = image,kernel = kernel,op = cv2.MORPH_GRADIENT )
cv2.imshow("orginal",image)
cv2.imshow("di",di_image)
cv2.imshow("er",erode_image)
cv2.imshow("di-er",new)
cv2.imshow("Gra",Grad)
cv2.waitKey()
cv2.destroyAllWindows()
6 礼帽运算
原图像-开运算得到的是边缘或者噪声
语法 op = cv2.MORPH_TOPHAT
下面用erode.JPG做案例:
import numpy as np
import cv2
image = cv2.imread("erode.JPG")
kernel = np.ones((5,5),dtype = np.uint8)
open_image = cv2.morphologyEx(src = image ,kernel = kernel ,iterations = 4 , op = cv2.MORPH_OPEN)
tophat_image = cv2.morphologyEx(src = image,kernel = kernel ,iterations = 4, op =cv2.MORPH_TOPHAT)
cv2.imshow("original",image)
cv2.imshow("open",open_image)
cv2.imshow("3",image-open_image)
cv2.imshow("tophat",tophat_image)
cv2.waitKey()
cv2.destroyAllWindows()
黑帽运算
闭运算图-原始图像 = 内部的小孔 \ 边缘部分
op = cv2.MORPH_BLACKHAT
下面用close.JPG做案例:
import numpy as np
import cv2
image = cv2.imread("close.JPG")
kernel = np.ones((7,7),dtype = np.uint8)
Close_image = cv2.morphologyEx(src = image,kernel = kernel,op = cv2.MORPH_CLOSE )
black_image = cv2.morphologyEx(src = image,kernel = kernel ,op = cv2.MORPH_BLACKHAT)
cv2.imshow("orginal",image)
cv2.imshow("clo",Close_image)
cv2.imshow("minus",image-Close_image)
cv2.imshow("black",black_image)cv2.waitKey()
cv2.destroyAllWindows()
致谢
本文参考了一些博主的文章,博取了他们的长处,也结合了我的一些经验,对他们表达诚挚的感谢,使我对 形态学操作 有更深入的了解,也推荐大家去阅读一下他们的文章。纸上学来终觉浅,明知此事要躬行:
【OpenCV-图像形态学操作】礼帽与黑帽、梯度运算、开运算与闭运算、形态学-膨胀操作、形态学-腐蚀操作
OpenCV(九)形态学操作4–礼帽与黑帽(顶帽与底帽)
相关文章:

《图像形态学运算全解析:原理、语法及示例展示》
简介: 本文详细介绍了图像形态学中的多种运算,包括腐蚀、膨胀、开运算、闭运算、形态学梯度运算、礼帽运算以及黑帽运算。分别阐述了各运算的原理、语法格式,并通过 Python 代码结合具体示例图片(如erode.JPG、dilate.JPG、close.…...
双十一线上服务调用链路追踪SkyWalking实战分析
序言 随着电商行业的飞速发展,双十一购物节已成为全球最大的购物狂欢节之一。在双十一期间,电商平台需要处理海量的用户请求和订单,这对系统的稳定性和性能提出了极高的要求。为了确保系统在高并发环境下的稳定运行,对线上服务的…...
网络安全究竟是什么? 如何做好网络安全
网络安全是如何工作的呢? 网络安全结合多层防御的优势和网络。每个网络安全层实现政策和控制。授权用户访问网络资源,但恶意参与者不得进行攻击和威胁。 我如何受益于网络安全? 数字化改变了我们的世界。我们的生活方式、工作、玩耍,和学习都发生了变化。每个组织希望提供…...

【C++】入门【一】
本节目标 一、C关键字(C98) 二、命名空间 三、C的输入输出 四、缺省函数 五、函数重载 六、引用 七、内联函数 八、auto关键字(C11) 九、范围for(C11) 十、指针空值nullptr(C11) 一.…...

【ArcGIS Pro实操第11期】经纬度数据转化成平面坐标数据
经纬度数据转化成平面坐标数据 数据准备ArcGIS操作步骤-投影转换为 Sinusoidal1 投影2 计算几何Python 示例 另:Sinusoidal (World) 和 Sinusoidal (Sphere) 的主要区别参考 数据准备 数据投影: 目标投影:与MODIS数据相同(Sinu…...

python学opencv|读取图像
【1】引言 前序学习了使用matplotlib模块进行画图,今天开始我们逐步尝试探索使用opencv来处理图片。 【2】学习资源 官网的学习链接如下: OpenCV: Getting Started with Images 不过读起来是英文版,可能略有难度,所以另推荐一…...
ffmpeg RTP PS推流
要实现 CRtpSendPs 类,使其能够将 H264 数据通过 RTP PS 流推送到指定的 URL,并支持 TCP 和 UDP 传输方式,您需要使用 FFmpeg 库。以下是该类的实现示例,包括必要的初始化、推流和退出函数。 步骤 初始化 FFmpeg 库:…...

Rust语言俄罗斯方块(漂亮的界面案例+详细的代码解说+完美运行)
tetris-demo A Tetris example written in Rust using Piston in under 500 lines of code 项目地址: https://gitcode.com/gh_mirrors/te/tetris-demo 项目介绍 "Tetris Example in Rust, v2" 是一个用Rust语言编写的俄罗斯方块游戏示例。这个项目不仅是一个简单…...
NUMA架构及在极速网络IO场景下的优化实践
NUMA技术原理 NUMA架构概述 随着多核CPU的普及,传统的对称多处理器(SMP)架构逐渐暴露出性能瓶颈。为了应对这一问题,非一致性内存访问(NUMA, Non-Uniform Memory Access)架构应运而生。NUMA架构是一种内存…...

Brain.js 用于浏览器的 GPU 加速神经网络
Brain.js 是一个强大的 JavaScript 库,它允许开发者在浏览器和 Node.js 环境中构建和训练神经网络 。这个库的目的是简化机器学习模型的集成过程,使得即使是没有深厚机器学习背景的开发者也能快速上手 。 概述 Brain.js 提供了易于使用的 APIÿ…...

Linux——用户级缓存区及模拟实现fopen、fweite、fclose
linux基础io重定向-CSDN博客 文章目录 目录 文章目录 什么是缓冲区 为什么要有缓冲区 二、编写自己的fopen、fwrite、fclose 1.引入函数 2、引入FILE 3.模拟封装 1、fopen 2、fwrite 3、fclose 4、fflush 总结 前言 用快递站讲述缓冲区 收件区(类比输…...
视觉感知与处理:解密计算机视觉的未来
文章目录 前言1. 计算机视觉的概述2. 计算机视觉的应用3. 运动感知与光流4. 人类视觉感知4.1 大脑中的视觉处理4.2 视觉缺陷与对比4.3 分辨率4.4 视觉错觉5. 图像采集与处理6. 图像处理流程7. 二值图像处理与分割8. 3D 机器视觉系统8.1 主动3D视觉8.2 立体视觉9. 商业机器视觉系…...

【大数据学习 | Spark-Core】广播变量和累加器
1. 共享变量 Spark两种共享变量:广播变量(broadcast variable)与累加器(accumulator)。 累加器用来对信息进行聚合,相当于mapreduce中的counter;而广播变量用来高效分发较大的对象,…...

postgresql按照年月日统计历史数据
1.按照日 SELECT a.time,COALESCE(b.counts,0) as counts from ( SELECT to_char ( b, YYYY-MM-DD ) AS time FROM generate_series ( to_timestamp ( 2024-06-01, YYYY-MM-DD hh24:mi:ss ), to_timestamp ( 2024-06-30, YYYY-MM-DD hh24:mi:ss ), 1 days ) AS b GROUP BY tim…...
pywin32库 -- 读取word文档中的图形
文章目录 前置操作解析body中的图形解析页眉中的图形 前置操作 基于pywin32打开、关闭word应用程序; import pythoncom from win32com.client import Dispatch, GetActiveObjectdef get_word_instance():""" 获取word进程 实例"""py…...
GitLab使用示例
以下是从 新建分支开始,配置 GitLab CI/CD 的完整详细流程,涵盖每个步骤、配置文件路径和具体示例。 1. 新建分支并克隆项目 1.1 在 GitLab 上创建新分支 登录 GitLab,进入目标项目页面。依次点击 Repository > Branches。点击右上角 Ne…...

uniapp echarts tooltip formation 不识别html
需求: echarts 的tooltip 的域名太长,导致超出屏幕 想要让他换行 思路一: 用formation自定义样式实现换行 但是: uniapp 生成微信小程序, echart种的tooltip 的formation 识别不了html ,自定义样式没办…...

3D扫描对文博行业有哪些影响?
三维扫描技术对文博行业产生了深远的影响,主要体现在以下几个方面: 一、高精度建模与数字化保护 三维扫描技术通过高精度扫描设备,能够捕捉到文物的每一个细节,包括形状、纹理、颜色等,从而生成逼真的3D模型。这些模…...
面试(十一)
目录 一.IO多路复用 二.为什么有IO多路复用机制? 三.IO多路复用的三种实现方式 3.1 select select 函数接口 select 使用示例 select 缺点 3.2 poll poll函数接口 poll使用示例 poll缺点 3.3 epoll epoll函数接口 epoll使用示例 epoll缺点 四. 进程和线程的区别…...
React-useState的使用
useState 是 React 提供的一个 Hook,允许你在函数组件中添加和管理状态(state)。在类组件中,状态管理通常是通过 this.state 和 this.setState 来实现的,而在函数组件中,useState 提供了类似的功能。 基本…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...

ui框架-文件列表展示
ui框架-文件列表展示 介绍 UI框架的文件列表展示组件,可以展示文件夹,支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项,适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...

echarts使用graphic强行给图增加一个边框(边框根据自己的图形大小设置)- 适用于无法使用dom的样式
pdf-lib https://blog.csdn.net/Shi_haoliu/article/details/148157624?spm1001.2014.3001.5501 为了完成在pdf中导出echarts图,如果边框加在dom上面,pdf-lib导出svg的时候并不会导出边框,所以只能在echarts图上面加边框 grid的边框是在图里…...

表单设计器拖拽对象时添加属性
背景:因为项目需要。自写设计器。遇到的坑在此记录 使用的拖拽组件时vuedraggable。下面放上局部示例截图。 坑1。draggable标签在拖拽时可以获取到被拖拽的对象属性定义 要使用 :clone, 而不是clone。我想应该是因为draggable标签比较特。另外在使用**:clone时要将…...

使用ch340继电器完成随机断电测试
前言 如图所示是市面上常见的OTA压测继电器,通过ch340串口模块完成对继电器的分路控制,这里我编写了一个脚本方便对4路继电器的控制,可以设置开启时间,关闭时间,复位等功能 软件界面 在设备管理器查看串口号后&…...