sin函数拟合
目录
一、 目的... 1
二、 模型设计... 1
2.1 输入与输出.... 1
2.2 隐藏层设计.... 1
2.3 优化算法与损失函数.... 1
2.4 神经网络结构.... 1
三、 训练... 1
3.1 数据生成.... 2
3.2 训练过程.... 2
3.3 训练参数与设置.... 2
四、 测试与分析... 2
4.1 选取不同激活函数.... 2
4.2 增加偏置.... 3
... 4
4.3 减少训练量.... 4
4.4 损失曲线分析.... 4
4.5 模型预测分析.... 5
五、 代码... 5
- 目的
通过构建一个简单的三层神经网络,模拟正弦函数 y = sin(2πx) 的映射关系,并使用 PyTorch 框架进行训练与优化,即输入x后会产生一个和正弦函数相同结果的y。
- 模型设计
2.1 输入与输出
本研究中的神经网络模型包括输入层、隐藏层和输出层。输入层包含一个神经元,用于接收单一的自变量 x。输出层同样包含一个神经元,输出模型计算得到的结果 y,即预测的正弦值。
2.2 隐藏层设计
网络的隐藏层包含 10 个神经元。此设计旨在增强网络的非线性表达能力,使其能够准确模拟正弦函数的波动特性。激活函数选择了 Tanh(双曲正切函数),该函数的输出范围为 [-1, 1],更符合正弦波的输出特性,相较于 Sigmoid 函数,Tanh 能更有效地模拟正弦波的起伏。
2.3 优化算法与损失函数
模型使用 Adam 优化器 进行训练。Adam 优化器结合了动量和自适应学习率,能够有效加速收敛并避免梯度消失或爆炸的情况。在损失函数的选择上,本研究使用了 均方误差(MSE)损失函数,该函数能衡量网络输出与目标正弦值之间的差异,并通过最小化损失函数来优化网络参数。
2.4 神经网络结构
模型的具体结构如下:
| 输入层 | 1 个神经元,用于接收输入 x |
| 隐藏层 | 10 个神经元,激活函数为 Tanh |
| 输出层 | 1 个神经元,输出拟合的正弦值 |
- 训练
3.1 数据生成
为了进行模型训练,首先生成了 x 和 y 的训练数据,其中 x 在区间 [0, 1) 内均匀分布,步长为 0.01,生成 100 个数据点。对应的 y 值则通过正弦函数 y = sin(2πx) 计算得到。这些数据用于训练神经网络,使其学习到 x 与 y 之间的映射关系。
3.2 训练过程
本研究采用 随机梯度下降法(SGD) 结合 Adam 优化器 对模型进行训练。训练的核心目标是最小化均方误差损失函数,以不断调整神经网络的权重和偏置。在每次迭代中,网络通过前向传播计算输出,通过反向传播计算梯度,并利用 Adam 优化器更新网络参数。训练过程的停止条件为最大迭代次数 10,000 次,损失值逐渐趋于稳定。
3.3 训练参数与设置
训练过程中使用的主要参数如下:
| 学习率 | 0.001,优化器的学习率设置为 0.001 |
| 迭代次数 | 最大迭代次数设置为 10,000 次 |
| 损失函数 | 均方误差(MSE)损失函数 |
| 优化器 | Adam 优化器 |
- 测试与分析
- 选取不同激活函数
如图 1和图 2所示,在本模型中,我们选择使用 Tanh 激活函数而非 Sigmoid 函数,主要是因为二者的输出范围与正弦函数的特性不匹配。Sigmoid 函数的输出范围是 (0, 1),无法有效表示正弦函数的负值部分,而正弦函数的输出范围是 [-1, 1],且具有周期性的波动。相对而言,Tanh 激活函数的输出范围为 [-1, 1],更符合正弦函数的特性,能够同时表示正负值,从而使得神经网络能够更有效地拟合正弦波的起伏。因此,选择 Tanh 激活函数有助于模型更准确地模拟正弦函数。
|
|
- 增加偏置
如图 3所示,在神经网络中,增加偏置项可以显著提升模型的拟合能力。偏置项允许每个神经元在计算时具有一个额外的自由度,使得网络能够更好地适应数据的分布。在没有偏置项的情况下,神经元的输出完全依赖于输入的加权和,限制了模型的表达能力。加入偏置项后,神经元的输出不再局限于零点,能够对输入数据进行更灵活的平移,从而更准确地捕捉到数据的特征。在拟合正弦函数的任务中,增加偏置项使得网络能够更有效地模拟正弦波的起伏,改善了拟合的效果,减少了偏差,提升了模型的预测精度。
|
|
- 减少训练量
减少训练的 epoch 数量可能导致模型出现欠拟合,因为模型没有足够的时间来学习数据的特征,从而无法有效捕捉到数据的复杂模式。。虽然减少 epoch 数量可以节省计算资源,但这往往以牺牲模型的表现为代价。
|
|
- 损失曲线分析
训练过程中,损失曲线的变化呈现出明显的规律性。初期,损失值较高,说明模型尚未有效学习到正弦函数的特性。随着训练的进行,损失逐渐下降,表明模型在不断优化,逐步逼近最优解。最终,损失曲线趋于平稳,接近最小值,表明模型已经学习到了数据中的规律,达到了收敛状态。
- 模型预测分析
通过对比模型的预测值与原始数据,可以看出,预测值与实际正弦函数的值非常接近,表明模型已成功模拟了正弦函数的行为。在可视化图中,红色的点表示预测值,蓝色的点表示实际值,两者几乎完全重合,进一步验证了模型在函数拟合任务中的高效性和准确性。
- 代码
| 核心代码 | |
| 介绍:这段代码是使用 Python 编写的,主要利用了 PyTorch 和 NumPy 库来训练一个简单的神经网络模型进行数据拟合。训练过程中的损失值会被记录并展示出来,同时还会展示模型预测结果与原始数据的对比图。 | |
| | import torch |
| | import torch.nn as nn |
| | import numpy as np |
| | import matplotlib.pyplot as plt |
| | import os |
| | os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # 忽略重复的库文件警告 |
| | class Network(nn.Module): |
| | def __init__(self, n_in, n_hidden, n_out): |
| | super().__init__() |
| | self.layer1 = nn.Linear(n_in, n_hidden, bias=False) |
| | self.layer2 = nn.Linear(n_hidden, n_out, bias=False) |
| | def forward(self, x): |
| | x = self.layer1(x) |
| | x = torch.tanh(x) # 使用 Tanh 激活函数 |
| | return self.layer2(x) |
| | def generate_data(start=0.0, end=1.0, step=0.01): |
| | """生成训练数据""" |
| | x = np.arange(start, end, step) |
| | y = np.sin(2 * np.pi * x) |
| | return x.reshape(len(x), 1), y.reshape(len(y), 1) |
| | def train_model(model, x, y, criterion, optimizer, num_epochs=10000): |
| | """训练模型并返回训练过程中的损失值""" |
| | loss_values = [] |
| | for epoch in range(num_epochs): |
| | y_pred = model(x) # 前向传播 |
| | loss = criterion(y_pred, y) # 计算损失 |
| | loss.backward() # 反向传播 |
| | optimizer.step() # 更新参数 |
| | loss_values.append(loss.item()) # 保存损失值 |
| | optimizer.zero_grad() # 清空梯度 |
| | # 每100次打印一次损失值 |
| | if epoch % 100 == 0: |
| | print(f'After {epoch} iterations, the loss is {loss.item()}') |
| | return loss_values |
| | def plot_results(x, y, h, loss_values, num_epochs): |
| | """绘制原始数据、预测数据和训练损失曲线""" |
| | fig, axs = plt.subplots(1, 2, figsize=(14, 6)) # 一行两列的子图布局 |
| | # 第一个子图:原始数据与预测数据的散点图 |
| | axs[0].scatter(x, y, label='Original Data') |
| | axs[0].scatter(x, h, label='Predicted Data', color='r') |
| | axs[0].set_title("Model Prediction vs Original Data") |
| | axs[0].legend() |
| | # 第二个子图:训练损失曲线 |
| | axs[1].plot(range(num_epochs), loss_values, label='Loss Curve') |
| | axs[1].set_xlabel('Epochs') |
| | axs[1].set_ylabel('Loss') |
| | axs[1].set_title('Training Loss') |
| | axs[1].legend() |
| | plt.tight_layout() # 自动调整子图间距 |
| | plt.show() |
| | if __name__ == '__main__': |
| | # 生成数据 |
| | x, y = generate_data() |
| | x = torch.Tensor(x) |
| | y = torch.Tensor(y) |
| | # 初始化模型、损失函数和优化器 |
| | model = Network(1, 10, 1) |
| | criterion = nn.MSELoss() # 均方误差损失函数 |
| | optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # Adam优化器 |
| | # 训练模型 |
| | loss_values = train_model(model, x, y, criterion, optimizer, num_epochs=10000) |
| | # 获取预测值 |
| | h = model(x).detach().numpy() # 获取模型输出并转为numpy数组 |
| | x = x.detach().numpy() # 获取输入数据 |
| | # 调用绘图函数 |
| | plot_results(x, y, h, loss_values, num_epochs=10000) |
相关文章:
sin函数拟合
目录 一、 目的... 1 二、 模型设计... 1 2.1 输入与输出.... 1 2.2 隐藏层设计.... 1 2.3 优化算法与损失函数.... 1 2.4 神经网络结构.... 1 三、 训练... 1 3.1 数据生成.... 2 3.2 训练过程.... 2 3.3 训练参数与设置.... 2 四、 测试与分析... 2 4.1 选取不同激活函数....…...
设置Mysql5.6允许外网访问
设置mysql用户支持外网访问步骤: 需要使用root权限登录mysql,更新mysql.user表,设置指定用户的Host字段为%,默认一般为127.0.0.1或者localhost。 1.登录数据库 1 mysql -u root -p 输入密码 1 mysql> use mysql; 2.查询hos…...
【随笔】一次JS和python中的MD5加密的记录
// 使用CryptoJS进行MD5加密和Base64编码 const sign CryptoJS.enc.Base64.stringify(CryptoJS.enc.Utf8.parse(CryptoJS.MD5(sign2encrypt).toString()));上面这段JS和下面这个python等价 def hash_and_encode(input_string):sign2encrypt input_string# 使用 hashlib 进行 …...
力扣 二叉树的中序遍历
用了递归遍历,关于树的经典例题。 题目 递归 常规做法即递归了,不会写也得背下来。递归可以大致理解方法调用自身,先写中序遍历递归的方法,递归一定要有递归出口,当遍历到节点为空时返回,即已经找到了。…...
uniapp学习(010-3 实现H5和安卓打包上线)
零基础入门uniapp Vue3组合式API版本到咸虾米壁纸项目实战,开发打包微信小程序、抖音小程序、H5、安卓APP客户端等 总时长 23:40:00 共116P 此文章包含第114p-116p的内容 文章目录 H5配置文件设置开始打包上传代码 安卓设置模拟器启动设置基础配置设置图标启动界面…...
基于DHCP,ACL的通信
该问题为华为的学习资料 1.首先把所有的PC机全部设置为DHCP 2.配置地址 3.ospf 4.dhcp 5.acl AR1 dhcp en interface GigabitEthernet0/0/0ip address 192.168.1.254 255.255.255.0 dhcp select global interface GigabitEthernet0/0/1ip address 10.1.12.1 255.255.255.…...
金融租赁系统助力企业升级与风险管理的新篇章
内容概要 在当今的商业环境中,“金融租赁系统”可谓是企业成功的秘密武器。简单来说,这个系统就像一位聪明的财务顾问,帮助企业在资金和资源的运用上达到最优化。从设备采购到项目融资,它提供了一种灵活的方式,让企业…...
linux安装部署mysql资料
安装虚拟机 等待检查完成 选择中文 软件选择 网络和主机名 开始安装 设置root密码 ADH-password 创建用户 等待安装完成 重启 接受许可证 Centos 7 64安装完成 安装mysql开始 Putty连接指定服务器 在 opt目录下新建download目录 将mysql文件传到该目录下 查看linux服务器的…...
深入理解 MongoDB:一款灵活高效的 NoSQL 数据库
在现代应用程序开发中,数据存储技术已经从传统的关系型数据库(RDBMS)扩展到多样化的 NoSQL 数据库。MongoDB 作为一款广泛使用的文档型数据库,以其灵活性、高性能和易用性成为开发者的首选之一。本篇博文将从 MongoDB 的核心概念、…...
爆改老旧笔记本---将笔记本改造为家用linux服务器
爆改老旧笔记本---将笔记本改造为家用linux服务器 linux启动盘制作镜像文件分区类型:MBR分区和GPT分区的定义MBR分区(Master Boot Record)GPT分区(GUID Partition Table)应用场景和优势MBR的应用场景和优势GPT的应用场景和优势 Li…...
RocketMQ MQTT Windows10 环境启动
RocketMQ MQTT Windows10 环境启动 参考环境和软件版本下载资源启动RocketMQ启动RocketMQ MQTT 参考 https://blog.csdn.net/weixin_43114058/article/details/140043257 https://blog.csdn.net/yangxiaovip/article/details/138355443 环境和软件版本 操作系统:…...
sd webui整合包怎么安装comfyui
环境: sd webui整合包 comfyui 问题描述: sd webui整合包怎么安装comfyui 扩展安装不成功 解决方案: 1.直接下载 ,解压到SD文件夹里(或者git拉一下) 2.ComfyUI模型共享:如果本机部署过Webui,那么ComfyUI可以与WebUI公用一套模型,防止复制大量模型浪费空间 将…...
Edify 3D: Scalable High-Quality 3D Asset Generation
Deep Imagination Research | NVIDIA 目录 一、Abstract 二、核心内容 1、多视图扩散模型 3、重建模型: 4、数据处理模块: 三、结果 1、文本到 3D 生成结果 2、图像到 3D 生成结果 3、四边形网格拓扑结构 一、Abstract NVIDIA 开发的用于高质量…...
鸿蒙HarmonyOS学习笔记(6)
定义扩展组件样式:Extend装饰器 在前文的示例中,可以使用Styles用于样式的重用,在Styles的基础上,我们提供了Extend,用于扩展原生组件样式。 说明 从API version 9开始,该装饰器支持在ArkTS卡片中使用。 从…...
蓝桥杯备赛笔记(一)
这里的笔记是关于蓝桥杯关键知识点的记录,有别于基础语法,很多内容只要求会用就行,无需深入掌握。 文章目录 前言一、编程基础1.1 C基础格式和版本选择1.2 输入输出cin和cout: 1.3 string以下是字符串的一些简介:字符串…...
在Java中使用Apache POI导入导出Excel(二)
本文将继续介绍POI的使用,上接在Java中使用Apache POI导入导出Excel(一) 使用Apache POI组件操作Excel(二) 14、读取和重写工作簿 try (InputStream inp new FileInputStream("workbook.xls")) { //Inpu…...
linux 中后端jar包启动不起来怎么回事 -bash: java: 未找到命令
一、用以下命令检查jdk版本 输入:java -version,如果JDK 环境变量没有配置,你会看到如下提示 二、配置jdk环境 1.先找到/etc/profile文件,然后在该文件最后面加上以下配置 export JAVA_HOME/usr/local/jdk-21.0.1 export PATH$…...
六大排序算法:插入排序、希尔排序、选择排序、冒泡排序、堆排序、快速排序
本章讲述数据结构中的六大排序算法 欢迎大佬们踊跃讨论,感谢大家支持! 我的博客主页链接 六大排序算法 一.插入排序1.1 直接插入排序1.2 希尔排序 二.选择排序2.1 单向选择排序2.2双向选择排序2.3 堆排序 三.交换排序3.1 冒泡排序3.2 快速排序3.2.1 Hoa…...
快速排序(C++实现)
基本思想 任取一个元素为中心,所有比它小的元素一律前放,比他大的元素一律后放,形成左右两个子表;对各子表重新选择中心元素并依此规则调整,直到每个子表的元素只剩一个。 通过一趟排序,将待排序记录分割成…...
【数据库知识】数据库关系代数表达式
文章目录 概述一、关系代数表达式的基本组成部分二、关系代数运算符及其使用样例三、关系代数表达式的优化四、总结 概述 数据库关系代数表达式是关系数据库系统查询语言的理论基础,它使用一系列符号和运算符来描述从一个或多个关系(即表)中…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...



