当前位置: 首页 > news >正文

【人工智能】Python常用库-PyTorch常用方法教程

PyTorch 是一个强大的开源深度学习框架,以其灵活性和动态计算图而广受欢迎。以下是 PyTorch 的详细教程,涵盖从基础到实际应用的使用方法。


1. 安装与导入

1.1 安装 PyTorch

访问 PyTorch 官方网站,根据系统、Python 版本和 CUDA 支持选择安装命令。

常用安装命令:

pip install torch torchvision torchaudio
1.2 导入库
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

2. PyTorch 基础

2.1 张量(Tensor)

张量是 PyTorch 的核心数据结构,可以看作是一个高维数组。

# 创建张量
a = torch.tensor([1.0, 2.0, 3.0])
b = torch.tensor([4.0, 5.0, 6.0])# 基本运算
c = a + b
print(c)  # 输出 tensor([5., 7., 9.])# 随机张量
random_tensor = torch.rand((2, 3))  # 2行3列随机数
print(random_tensor)

输出结果

tensor([5., 7., 9.])
tensor([[0.9980, 0.2970, 0.5257],[0.8807, 0.0471, 0.7896]])
2.2 自动求导

PyTorch 提供动态计算图支持自动求导。

x = torch.tensor(2.0, requires_grad=True)
y = x**2 + 3*x + 4y.backward()  # 自动求导
print(x.grad)  # 输出 dy/dx = 2*x + 3 = 7.0

输出结果

tensor(7.)

3. 数据加载

PyTorch 提供强大的数据加载功能。

import torchvision.transforms as transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader# 下载并加载 MNIST 数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_data = MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)

4. 构建神经网络

4.1 使用 nn.Module 构建模型
import torch.nn as nnclass SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc1 = nn.Linear(28 * 28, 128)self.relu = nn.ReLU()self.fc2 = nn.Linear(128, 10)self.softmax = nn.Softmax(dim=1)def forward(self, x):x = x.view(-1, 28 * 28)  # 展平输入x = self.relu(self.fc1(x))x = self.softmax(self.fc2(x))return xmodel = SimpleNN()print(model)

输出结果

SimpleNN((fc1): Linear(in_features=784, out_features=128, bias=True)(relu): ReLU()(fc2): Linear(in_features=128, out_features=10, bias=True)(softmax): Softmax(dim=1)
)

5. 模型训练

5.1 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失
optimizer = optim.Adam(model.parameters(), lr=0.001)
5.2 训练循环
for epoch in range(5):for images, labels in train_loader:optimizer.zero_grad()  # 梯度清零outputs = model(images)loss = criterion(outputs, labels)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新权重print(f"Epoch {epoch+1}, Loss: {loss.item()}")

完整代码

from torch import nn, optim
import torchvision.transforms as transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoaderclass SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc1 = nn.Linear(28 * 28, 128)self.relu = nn.ReLU()self.fc2 = nn.Linear(128, 10)self.softmax = nn.Softmax(dim=1)def forward(self, x):x = x.view(-1, 28 * 28)  # 展平输入x = self.relu(self.fc1(x))x = self.softmax(self.fc2(x))return xmodel = SimpleNN()# 下载并加载 MNIST 数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_data = MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)criterion = nn.CrossEntropyLoss()  # 交叉熵损失
optimizer = optim.Adam(model.parameters(), lr=0.001)for epoch in range(5):for images, labels in train_loader:optimizer.zero_grad()  # 梯度清零outputs = model(images)loss = criterion(outputs, labels)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新权重print(f"Epoch {epoch + 1}, Loss: {loss.item()}")

输出结果

Epoch 1, Loss: 1.482284665107727
Epoch 2, Loss: 1.4968496561050415
Epoch 3, Loss: 1.5289227962493896
Epoch 4, Loss: 1.4832825660705566
Epoch 5, Loss: 1.5070817470550537

6. 模型评估

6.1 在测试集上评估
test_data = MNIST(root='./data', train=False, transform=transform)
test_loader = DataLoader(test_data, batch_size=32, shuffle=False)correct = 0
total = 0
with torch.no_grad():  # 禁用梯度计算for images, labels in test_loader:outputs = model(images)_, predicted = torch.max(outputs, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f"Test Accuracy: {correct / total * 100:.2f}%")

输出结果

Test Accuracy: 10.32%

7. GPU 加速

PyTorch 支持使用 GPU 加速。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)# 将数据也移动到 GPU
for images, labels in train_loader:images, labels = images.to(device), labels.to(device)outputs = model(images)

8. 保存与加载模型

8.1 保存模型
torch.save(model.state_dict(), 'model.pth')
8.2 加载模型
model = SimpleNN()
model.load_state_dict(torch.load('model.pth'))
model.eval()  # 切换到评估模式

9. 实际案例

9.1 CIFAR-10 图像分类
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms# CIFAR-10 数据集
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_data = CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)self.pool = nn.MaxPool2d(kernel_size=2, stride=2)self.fc1 = nn.Linear(16 * 16 * 16, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = x.view(-1, 16 * 16 * 16)x = self.fc1(x)return xmodel = CNN()
# 后续训练步骤类似

10. PyTorch 优势总结

  1. 动态计算图:支持动态构建与修改模型。
  2. 灵活性:适合研究和开发,易于调试。
  3. 强大的社区支持:广泛的教程、示例和扩展工具。

通过实践,PyTorch 能够帮助用户更好地理解和实现深度学习算法!

相关文章:

【人工智能】Python常用库-PyTorch常用方法教程

PyTorch 是一个强大的开源深度学习框架,以其灵活性和动态计算图而广受欢迎。以下是 PyTorch 的详细教程,涵盖从基础到实际应用的使用方法。 1. 安装与导入 1.1 安装 PyTorch 访问 PyTorch 官方网站,根据系统、Python 版本和 CUDA 支持选择安…...

Android Studio安装TalkX AI编程助手

文章目录 TalkX简介编程场景 TalkX安装TalkX编程使用ai编程助手相关文章 TalkX简介 TalkX是一款将OpenAI的GPT 3.5/4模型集成到IDE的AI编程插件。它免费提供特定场景的AI编程指导,帮助开发人员提高工作效率约38%,甚至在解决编程问题的效率上提升超过2倍…...

#渗透测试#红蓝攻防#HW#漏洞挖掘#漏洞复现02-永恒之蓝漏洞

免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停…...

gitlab自动打包python项目

现在新版的gitlab可以不用自己配置runner什么的了 直接写.gitlab-ci.yml文件就行,这里给出一个简单的依靠setup把python项目打包成whl文件的方法 首先写.gitlab-ci.yml文件,放到项目根目录里 stages: # List of stages for jobs, and their or…...

残差神经网络

目录 1. 梯度消失问题 2. 残差学习的引入 3. 跳跃连接(Shortcut Connections) 4. 恒等映射与维度匹配 5. 反向传播与梯度流 6. 网络深度与性能 总结 残差神经网络的原理是基于“残差学习”的概念,它旨在解决深度神经网络训练中的梯度消…...

mini-spring源码分析

IOC模块 关键解释 beanFactory:beanFactory是一个hashMap, key为beanName, Value为 beanDefination beanDefination: BeanDefinitionRegistry,BeanDefinition注册表接口,定义注册BeanDefinition的方法 beanReference:增加Bean…...

黑马程序员Java项目实战《苍穹外卖》Day01

苍穹外卖-day01 课程内容 软件开发整体介绍苍穹外卖项目介绍开发环境搭建导入接口文档Swagger 项目整体效果展示: ​ 管理端-外卖商家使用 ​ 用户端-点餐用户使用 当我们完成该项目的学习,可以培养以下能力: 1. 软件开发整体介绍 作为一…...

uniapp开发支付宝小程序自定义tabbar样式异常

解决方案: 这个问题应该是支付宝基础库的问题,除了依赖于官方更新之外,开发者可以利用《自定义 tabBar》曲线救国 也就是创建一个空内容的自定义tabBar,这样即使 tabBar 被渲染出来,但从视觉上也不会有问题 1.官方文…...

python+django5.1+docker实现CICD自动化部署springboot 项目前后端分离vue-element

一、开发环境搭建和配置 # channels是一个用于在Django中实现WebSocket、HTTP/2和其他异步协议的库。 pip install channels#channels-redis是一个用于在Django Channels中使用Redis作为后台存储的库。它可以用于处理#WebSocket连接的持久化和消息传递。 pip install channels…...

python代码示例(读取excel文件,自动播放音频)

目录 python 操作excel 表结构 安装第三方库 代码 自动播放音频 介绍 安装第三方库 代码 python 操作excel 表结构 求出100班同学的平均分 安装第三方库 因为这里的表结构是.xlsx文件,需要使用openpyxl库 如果是.xls格式文件,需要使用xlrd库 pip install openpyxl /…...

【第十课】Rust并发编程(一)

目录 前言 Fork和Join 前言 本节会介绍Rust中的并发编程,并发编程在编程中是提升cpu使用率的一大利器,通过多线程技术提升效率,Rust的并发和其他编程语言的并发不同的地方在于,Rust号称无畏并发。更重要的一点是安全。Rust中所有…...

图形渲染性能优化

variable rate shading conditional render 设置可见性等, 不需要重新build command buffer indirect draw glMultiDraw* - 直接支持多次绘制glMultiDrawIndirect - 间接多次绘制multithreading 多线程录制 实例化渲染 lod texture array 小对象剔除 投影到…...

elasticsearch的索引模版使用方法

5 索引模版⭐️⭐️⭐️⭐️⭐️ 索引模板就是创建索引时要遵循的模板规则索引模板仅对新创建的索引有效,已经创建的索引并不受索引模板的影响 5.1 索引模版的基本使用 1.查看所有的索引模板 GET 10.0.0.91:9200/_index_template2.创建自定义索引模板 xixi &…...

论文学习——进化动态约束多目标优化:测试集和算法

论文题目:Evolutionary Dynamic Constrained Multiobjective Optimization: Test Suite and Algorithm 进化动态约束多目标优化:测试集和算法(Guoyu Chen ,YinanGuo , Member, IEEE, Yong Wang , Senior Member, IEEE, Jing Liang , Senior …...

C++中的volatile关键字

作用: 1.它用于修饰变量,告知编译器该变量的值可能会在程序的外部被改变,编译器不能对这个变量的访问进行优化。这是因为编译器通常会对代码进行优化,例如把变量的值缓存到寄存器中,但对于 volatile 变量,…...

linux桌面qt应用程序UI自动化实现之dogtail

1. 前言 Dogtail适用于Linux 系统上进行 GUI 自动化测试,利用 Accessibility 技术与桌面程序通信;Dogtail 包含一个名为 sniff 的组件,这是一个嗅探器,用于 GUI 程序追踪; 源码下载:​​dogtail PyPI 可通过sudo python setup.py install安装或sudo pip install dogt…...

Hello World C#

using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System; 引入了System命名空间,基本输入输出。一般只用这个,后面的不用 using System.Collections.Generic; 包含了定…...

SAP开发语言ABAP开发入门

1. 了解ABAP开发环境和基础知识 - ABAP简介 - ABAP(Advanced Business Application Programming)是SAP系统中的编程语言,主要用于开发企业级的业务应用程序,如财务、物流、人力资源等模块的定制开发。 - 开发环境搭建 - 首先需…...

应急响应靶机——easy溯源

载入虚拟机,开启虚拟机: (账户密码:zgsfsys/zgsfsys) 解题程序.exe是额外下载解压得到的: 1. 攻击者内网跳板机IP地址 2. 攻击者服务器地址 3. 存在漏洞的服务(提示:7个字符) 4. 攻击者留下的flag(格式…...

【前端】vscode报错: 无法加载文件 D:\nodejs\node_global\yarn.ps1,因为在此系统上禁止运行脚本。

vscode运行前端代码时候,执行yarn install时候报错 问题: 无法加载文件 D:\nodejs\node_global\yarn.ps1,因为在此系统上禁止运行脚本。 解决方式: 首先用管理员身份运行vscode 查看 get-ExecutionPolicy,Restrict…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型,它将权限分配给角色,再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...

AD学习(3)

1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分: (1)PCB焊盘:表层的铜 ,top层的铜 (2)管脚序号:用来关联原理图中的管脚的序号,原理图的序号需要和PCB封装一一…...

如何通过git命令查看项目连接的仓库地址?

要通过 Git 命令查看项目连接的仓库地址,您可以使用以下几种方法: 1. 查看所有远程仓库地址 使用 git remote -v 命令,它会显示项目中配置的所有远程仓库及其对应的 URL: git remote -v输出示例: origin https://…...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学

一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件,其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时,价带电子受激发跃迁至导带,形成电子-空穴对,导致材料电导率显著提升。…...