当前位置: 首页 > news >正文

深入解析 PyTorch 的 torch.load() 函数:用法、参数与实际应用示例

深入解析 PyTorch 的 torch.load() 函数:用法、参数与实际应用示例

函数 torch.load() 是一个在PyTorch中用于加载通过 torch.save() 保存的序列化对象的核心功能。这个函数广泛应用于加载预训练模型、模型的状态字典(state dictionaries)、优化器状态以及其他PyTorch对象。它利用Python的反序列化能力,特别地对张量的底层存储(storages)进行了特殊处理,以支持跨设备加载和内存效率。

基本语法和参数详解

torch.load(f, map_location=None, pickle_module=pickle, *, weights_only=False, mmap=None, **pickle_load_args)
参数详细说明
  • f (Union[str, PathLike, BinaryIO, IO[bytes]])

    • 类型:可以是字符串、路径对象或文件对象。
    • 含义:指定要加载的文件的路径或文件对象。如果是文件对象,它必须实现基本的文件读取方法,如 read()seek()
  • map_location (Optional[Union[Callable[[Storage, str], Storage], torch.device, str, Dict[str, str]])

    • 类型:可选,可以是函数、设备对象、字符串或字典。
    • 含义:用于指定存储设备的重新映射策略。
      • 函数:如果提供了函数,它应该接受存储和位置标签作为参数,并返回新的存储位置。
      • 设备或字符串:可以直接指定所有张量应该被加载到的设备,如 'cpu''cuda:0'
      • 字典:将文件中的位置标签映射到新的存储位置。
  • pickle_module (Optional[Any])

    • 类型:模块。
    • 含义:用于反序列化的模块,默认为Python的 pickle 模块。如果序列化时使用了特定的模块,则加载时也必须使用相同的模块。
  • weights_only (Optional[bool])

    • 类型:布尔值。
    • 含义:如果设置为 True,则加载过程将限制为仅加载张量、基本数据类型、字典和通过 torch.serialization.add_safe_globals() 添加的安全类型。
  • mmap (Optional[bool])

    • 类型:布尔值。
    • 含义:如果设置为 True,则文件将通过内存映射的方式访问,而不是完全加载到内存中。这对处理大型数据文件特别有用,因为它减少了内存使用并可能提高访问速度。
  • pickle_load_args (Any)

    • 类型:关键字参数。
    • 含义:传递给 pickle_module.load()pickle_module.Unpickler() 的附加参数,例如 encoding

实际使用示例

示例 1: 基础加载模型

加载一个在GPU上训练并保存的模型到CPU上进行推理:

import torch# 设置加载路径
model_path = 'gpu_trained_model.pth'# 加载模型到CPU
model = torch.load(model_path, map_location='cpu')# 打印模型结构确认加载无误
print(model)
示例 2: 使用内存映射和仅加载权重

对于大型模型文件,使用内存映射加载权重,减少内存占用:

import torch# 模型文件路径
large_model_path = 'large_model_weights.pth'# 使用内存映射方式加载模型权重到CPU,限制为仅加载权重
model_weights = torch.load(large_model_path, map_location='cpu', mmap=True, weights_only=True)# 假设 MyModel 是模型的架构类
model = MyModel()
model.load_state_dict(model_weights)# 输出模型确保权重被正确加载
print(model)

这些示例清楚地展示了如何灵活使用 torch.load() 的不同参数来优化模型的加载策略,适应不同的硬件环境和内存限制,从而实现高效的模型部署。

相关文章:

深入解析 PyTorch 的 torch.load() 函数:用法、参数与实际应用示例

深入解析 PyTorch 的 torch.load() 函数:用法、参数与实际应用示例 函数 torch.load() 是一个在PyTorch中用于加载通过 torch.save() 保存的序列化对象的核心功能。这个函数广泛应用于加载预训练模型、模型的状态字典(state dictionaries)、…...

ros2键盘实现车辆: 简单的油门_刹车_挡位_前后左右移动控制

参考: ROS python 实现键盘控制 底盘移动 https://blog.csdn.net/u011326325/article/details/131609340游戏手柄控制 1.背景与需求 1.之前实现过 键盘控制 底盘移动的程序, 底盘是线速度控制, 效果还不错. 2.新的底盘 只支持油门控制, 使用线速度控制问题比较多, 和底盘适配…...

ubuntu安装chrome无法打开问题

如果在ubuntu安装chrome后,点击chrome打开没反应,可以先试着在terminal上用命令打开 google-chrome 如果运行命令显示 Chrome has locked the profile so that it doesnt get corrupted. If you are sure no other processes are using this profile…...

CTF-RE 从0到N:Chacha20逆向实战 2024 强网杯青少年专项赛 EnterGame WP (END)

只想解题的看最后就好了,前面是算法分析 Chacha20 c语言是如何利用逻辑运算符拆分变量和合并的 通过百度网盘分享的文件:EnterGame_9acdc7c33f85832082adc6a4e... 链接:https://pan.baidu.com/s/182SRj2Xemo63PCoaLNUsRQ?pwd1111 提取码:1…...

vue3 ajax获取json数组排序举例

使用axios获取接口数据 可以在代码中安装axios包,并写入到package.json文件: npm install axios -S接口调用代码举例如下: const fetchScore async () > {try {const res await axios.get(http://127.0.0.1:8000/score/${userInput.v…...

web安全之信息收集

在信息收集中,最主要是就是收集服务器的配置信息和网站的敏感信息,其中包括域名及子域名信息,目标网站系统,CMS指纹,目标网站真实IP,开放端口等。换句话说,只要是与目标网站相关的信息,我们都应该去尽量搜集。 1.1收集域名信息 知道目标的域名之后,获取域名的注册信…...

报错:java: 无法访问org.springframework.boot.SpringApplication

idea报错内容&#xff1a; java: 无法访问org.springframework.boot.SpringApplication 报错原因&#xff1a; <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.4…...

线上+线下≠新零售,6大互通诠释新零售的核心要点-亿发

新零售&#xff0c;这个词汇在近年来频繁出现在我们的视野中&#xff0c;它不仅仅是线上与线下的简单相加&#xff0c;而是一场深刻的商业变革。本文将通过6大互通的核心要点&#xff0c;为您揭示新零售的真正内涵。 1. 商品的互联互通 新零售模式下&#xff0c;商品的互联互…...

GitHub Copilot革命性更新:整合顶尖AI模型,如何重塑开发体验?

在技术快速发展的今天&#xff0c;代码辅助工具已成为提升开发效率的利器。今天&#xff0c;我们带来了一个激动人心的消息——GitHub Copilot宣布引入多模型选择功能&#xff0c;这不仅是技术上的一次飞跃&#xff0c;更是对开发者工作流程的一次革新。 多模型选择&#xff1a…...

AWS账户是否支持区域划分?

在云计算的世界中&#xff0c;亚马逊网络服务&#xff08;AWS&#xff09;凭借其全球化的基础设施和丰富的服务选项受到许多企业和开发者的青睐。一个常见的问题是&#xff1a;AWS账户是否支持区域划分&#xff1f;为了回答这个问题&#xff0c;我们九河云一起深入了解AWS的区域…...

Easy Excel 通过【自定义批注拦截器】实现导出的【批注】功能

目录 Easy Excel 通过 【自定义批注拦截器】实现导出的【批注】功能需求原型&#xff1a;相关数据&#xff1a;要导出的对象字段postman 格式导出对象VO 自定义批注拦截器业务代码&#xff1a; 拦截器代码解释&#xff1a;详细解释&#xff1a;格式优化&#xff1a; Easy Excel…...

整数对最小和(Java Python JS C++ C )

题目描述 给定两个整数数组array1、array2,数组元素按升序排列。 假设从array1、array2中分别取出一个元素可构成一对元素,现在需要取出k对元素, 并对取出的所有元素求和,计算和的最小值。 注意: 两对元素如果对应于array1、array2中的两个下标均相同,则视为同一对元…...

MySQL 启动失败问题分析与解决方案:`mysqld.service failed to run ‘start-pre‘ task`

目录 前言1. 问题背景2. 错误分析2.1 错误信息详解2.2 可能原因 3. 问题排查与解决方案3.1 检查 MySQL 错误日志3.2 验证 MySQL 配置文件3.3 检查文件和目录权限3.4 手动启动 MySQL 服务3.5 修复 systemd 配置文件3.6 验证依赖环境 4. 进一步优化与自动化处理结语 前言 在日常…...

谷歌浏览器Chrome打开百度很慢,其他网页正常的解决办法,试了很多,找到了适合的

最近不知怎么的&#xff0c;Chrome突然间打开百度很慢&#xff0c;甚至打不开。不光我一个人遇到这问题&#xff0c;我同事也遇到这个问题。开发中难免遇到问题&#xff0c;需要百度&#xff0c;现在是百度不了。 作为一名开发人员&#xff0c;习惯了使用Chrome进行开发&#…...

深度学习Pytorch中的模型保存与加载方法

深度学习:Pytorch中的模型保存与加载方法 在 PyTorch 中&#xff0c;模型的保存和加载对于模型的持久化和后续应用至关重要。这里详细介绍了两种主要方法&#xff1a;保存整个模型&#xff08;包括架构和参数&#xff09;和仅保存模型的状态字典。以下内容进一步完善了加载模型…...

小红书矩阵运营:怎么通过多个账号来提升品牌曝光?

在如今的社交媒体环境中&#xff0c;小红书作为一个以分享生活方式、购物心得为主的平台&#xff0c;已经成为品牌营销的热土。尤其是通过“小红书矩阵”&#xff0c;品牌能够精准触达不同的用户群体&#xff0c;提升曝光度和转化率。那么&#xff0c;如何通过多个账号进行矩阵…...

Llama-2-7b:vocab size:32000;embeddings:4096;hidden_layers是什么意思

目录 Llama-2-7b:vocab size:32000;embeddings:4096 vocab size:模型能解析词汇数量==n_vocab num_hidden_layers: 32 nanogpt隐藏层4 "initializer_range": 0.02 Token Embed是什么 举例说明 不同Chat版本的Token Embed(Token Embeddings) 区别 Llama…...

【moveit!】ROS学习笔记

参考&#xff1a;Movelt使用笔记-Movelt Setup Assistant-CSDN博客 MoveIt! 学习笔记12 - MoveIt! Setup Assistant 配置方法_ros moveit 添加home点-CSDN博客 一、使用Setup Assistant配置机械臂 &#xff08;1&#xff09;使用如下命令启动MoveIt Setup Assistant rosrun…...

【Leetcode 每日一题 - 补卡】3259. 超级饮料的最大强化能量

问题背景 来自未来的体育科学家给你两个整数数组 e n e r g y D r i n k A energyDrinkA energyDrinkA 和 e n e r g y D r i n k B energyDrinkB energyDrinkB&#xff0c;数组长度都等于 n n n。这两个数组分别代表 A A A、 B B B 两种不同能量饮料每小时所能提供的强化…...

【人工智能】使用Python实现序列到序列(Seq2Seq)模型进行机器翻译

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 序列到序列(Sequence-to-Sequence, Seq2Seq)模型是解决序列输入到序列输出任务的核心架构,广泛应用于机器翻译、文本摘要和问答系统等自然语言处理任务中。本篇文章深入介绍 Seq2Seq 模型的原理及其核心组件(…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

前端开发者常用网站

Can I use网站&#xff1a;一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use&#xff1a;Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站&#xff1a;MDN JavaScript权威网站&#xff1a;JavaScript | MDN...

React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构

React 实战项目&#xff1a;微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇&#xff01;在前 29 篇文章中&#xff0c;我们从 React 的基础概念逐步深入到高级技巧&#xff0c;涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...