当前位置: 首页 > news >正文

【计算视觉算法与应用】金字塔,下采样Gaussian Pyramid. 上采用 Laplacian Pyramid (code: py)

金字塔(Pyramid)在图像处理中主要用于多尺度分析和图像压缩。常见的图像金字塔有两种:

  1. 高斯金字塔(Gaussian Pyramid):用于下采样图像,生成分辨率逐渐降低的图像序列。
  2. 拉普拉斯金字塔(Laplacian Pyramid):通过高斯金字塔生成,用于图像重建和细节增强。

以下是金字塔在图像处理中的作用以及代码实现和可视化:


1. 高斯金字塔

高斯金字塔通过不断下采样(减小分辨率),产生一系列从高分辨率到低分辨率的图像。

代码实现
import cv2
import matplotlib.pyplot as plt# 加载图像
image = cv2.imread('image.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)  # 转换为RGB
levels = 4  # 金字塔层数# 构建高斯金字塔
gaussian_pyramid = [image]
for i in range(levels):image = cv2.pyrDown(image)  # 下采样gaussian_pyramid.append(image)# 可视化
plt.figure(figsize=(12, 8))
for i, img in enumerate(gaussian_pyramid):plt.subplot(1, levels + 1, i + 1)plt.imshow(img)plt.title(f"Level {i}")plt.axis('off')
plt.show()

2. 拉普拉斯金字塔

拉普拉斯金字塔由高斯金字塔生成,通过将高斯金字塔中的图像与上采样后的低分辨率图像相减,得到细节信息。

代码实现
import cv2
import matplotlib.pyplot as plt# 加载图像
image = cv2.imread('image.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)  # 转换为RGB
levels = 4  # 金字塔层数# 构建高斯金字塔
gaussian_pyramid = [image]
for i in range(levels):image = cv2.pyrDown(image)  # 下采样gaussian_pyramid.append(image)# 构建拉普拉斯金字塔
laplacian_pyramid = []
for i in range(levels, 0, -1):gaussian_expanded = cv2.pyrUp(gaussian_pyramid[i])  # 上采样# 确保尺寸一致,避免大小差异引发的错误gaussian_expanded = cv2.resize(gaussian_expanded, (gaussian_pyramid[i - 1].shape[1], gaussian_pyramid[i - 1].shape[0]))laplacian = cv2.subtract(gaussian_pyramid[i - 1], gaussian_expanded)  # 相减得到细节laplacian_pyramid.append(laplacian)# 可视化高斯金字塔
plt.figure(figsize=(12, 8))
for i, img in enumerate(gaussian_pyramid):plt.subplot(2, levels + 1, i + 1)plt.imshow(img)plt.title(f"Gaussian Level {i}")plt.axis('off')# 可视化拉普拉斯金字塔
for i, img in enumerate(laplacian_pyramid):plt.subplot(2, levels + 1, levels + 2 + i)plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))plt.title(f"Laplacian Level {i}")plt.axis('off')plt.tight_layout()
plt.show()

金字塔在图像处理中的作用

  1. 多尺度特征提取:在不同分辨率下提取图像的局部特征。
  2. 图像压缩:金字塔结构可以用较少的数据表示图像的主要信息。
  3. 图像融合:通过拉普拉斯金字塔对图像进行融合,保留不同图像的细节信息。
  4. 对象检测:在金字塔的不同尺度上搜索目标,检测大小变化的对象。
  5. 图像重建:利用拉普拉斯金字塔将低分辨率的图像逐步还原为高分辨率。

3. 图像融合示例

基于拉普拉斯金字塔的图像融合,适用于不同曝光的图像组合。

代码实现
import cv2
import matplotlib.pyplot as plt# 加载两张图像(大小相同)
image1 = cv2.imread('image1.jpg')
image2 = cv2.imread('image2.jpg')# 构建金字塔
gp_image1 = [image1]
gp_image2 = [image2]for i in range(levels):gp_image1.append(cv2.pyrDown(gp_image1[-1]))gp_image2.append(cv2.pyrDown(gp_image2[-1]))lp_image1 = [gp_image1[-1]]
lp_image2 = [gp_image2[-1]]for i in range(levels - 1, 0, -1):lap1 = cv2.subtract(gp_image1[i - 1], cv2.pyrUp(gp_image1[i]))lap2 = cv2.subtract(gp_image2[i - 1], cv2.pyrUp(gp_image2[i]))lp_image1.append(lap1)lp_image2.append(lap2)# 合并金字塔
pyramid_combined = []
for lap1, lap2 in zip(lp_image1, lp_image2):rows, cols, _ = lap1.shapelap_combined = np.hstack((lap1[:, :cols // 2], lap2[:, cols // 2:]))pyramid_combined.append(lap_combined)# 重建图像
reconstructed_image = pyramid_combined[0]
for i in range(1, len(pyramid_combined)):reconstructed_image = cv2.pyrUp(reconstructed_image)reconstructed_image = cv2.add(reconstructed_image, pyramid_combined[i])# 显示融合结果
plt.imshow(cv2.cvtColor(reconstructed_image, cv2.COLOR_BGR2RGB))
plt.title("Fused Image")
plt.axis('off')
plt.show()

通过上述代码和可视化,我们可以清晰地看到金字塔的应用和效果,同时能够理解其在多尺度分析和图像处理中的重要作用。

相关文章:

【计算视觉算法与应用】金字塔,下采样Gaussian Pyramid. 上采用 Laplacian Pyramid (code: py)

金字塔(Pyramid)在图像处理中主要用于多尺度分析和图像压缩。常见的图像金字塔有两种: 高斯金字塔(Gaussian Pyramid):用于下采样图像,生成分辨率逐渐降低的图像序列。拉普拉斯金字塔&#xff…...

基于BERT的语义分析实现

✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…...

DNS查询工具

DNS查询工具是用于查询和获取域名相关信息的工具。通过这些工具,您可以获取到诸如IP地址、邮件服务器以及域名服务器等信息,这对于排查问题、设置域名配置以及确保网站正常运行都非常重要。 以下是五款常用的DNS记录查询工具: MxToolbox MxTo…...

ODB 框架

目录 概述 基本工作原理 映射C对象到数据库表 从数据库中加载对象 持久化C对象到数据库 ODB常用接口 表创建预处理 #pragma db Object table 数据表属性 id auto column(“xxx”) type("xxx") unique index null default&…...

Ubuntu WiFi检测

ubuntu检测到多个同名wifi,怎么鉴别假冒的wifi? 在Ubuntu中,如果检测到多个同名的Wi-Fi网络,可能存在假冒的Wi-Fi(例如“蜜罐”攻击)。以下是一些鉴别假冒Wi-Fi的方法: 检查信号强度&#xff1a…...

QILSTE H4-108TCG高亮纯lu光LED灯珠 发光二极管LED

型号:H4-108TCG 在电子领域,H4-108TCG LED以其卓越的性能和微小的尺寸1.6x0.8x0.4mm脱颖而出。这款高亮纯绿光LED,采用透明平面胶体,符合EIA标准包装,是环保产品,符合ROHS标准。防潮等级为Level 3&#xf…...

IP与“谷子”齐飞,阅文“乘势而上”?

爆火的“谷子经济”,又捧出一只“潜力股”。 近日,阅文集团股价持续上涨,5日累计涨幅达13.20%。这其中,周三股价一度大涨约15%至29.15港元,强势突破20日、30日、120日等多根均线,市值突破280亿港元关口。 …...

Java阶段三05

第3章-第5节 一、知识点 动态代理、jdk动态代理、cglib动态代理、AOP、SpringAOP 二、目标 理解什么是动态代理和它的作用 学会使用JAVA进行动态代理 理解什么是AOP 学会使用AOP 理解什么是AOP的切入点 三、内容分析 重点 理解什么是动态代理和它的作用 理解什么是AO…...

C# yield 关键字

文章目录 前言一、yield 关键字的语法形式及使用场景(一)yield return(二)yield break 二、yield 关键字的工作原理三、yield 关键字的优势与应用场景(一)优势(二)应用场景 前言 在 …...

SpringBoot开发——结合Nginx实现负载均衡

文章目录 负载均衡介绍介绍Nginx实现负载均衡的示例图:负载均衡策略1.Round Robin:2.Least Connections:3.IP Hash :4.Generic Hash:5.Least Time (NGINX Plus only)6.Random:Nginx+SpringBoot实现负载均衡环境准备Nginx 配置负载均衡测试负载均衡介绍 介绍 在介绍Nginx的负…...

RabbitMQ在手动消费的模式下设置失败重新投递策略

最近在写RabbitMQ的消费者,因为业务需求,希望失败后重试一定次数,超过之后就不处理了,或者放入死信队列。我这里就达到重试次数后就不处理了。本来以为很简单的,问了kimi,按它的方法配置之后,发…...

TsingtaoAI具身智能高校实训方案通过华为昇腾技术认证

日前,TsingtaoAI推出的“具身智能高校实训解决方案-从AI大模型机器人到通用具身智能”基于华为技术有限公司AI框架昇思MindSpore,完成并通过昇腾相互兼容性技术认证。 TsingtaoAI&华为昇腾联合解决方案 本项目“具身智能高校实训解决方案”以实现高…...

【Linux】线程池设计 + 策略模式

🌈 个人主页:Zfox_ 🔥 系列专栏:Linux 目录 一:🔥 线程池 1-1 ⽇志与策略模式1-2 线程池设计1-3 线程安全的单例模式1-3-1 什么是单例模式1-3-2 单例模式的特点1-3-3 饿汉实现⽅式和懒汉实现⽅式1-3-4 饿汉…...

网络原理(一):应用层自定义协议的信息组织格式 HTTP 前置知识

目录 1. 应用层 2. 自定义协议 2.1 根据需求 > 明确传输信息 2.2 约定好信息组织的格式 2.2.1 行文本 2.2.2 xml 2.2.3 json 2.2.4 protobuf 3. HTTP 协议 3.1 特点 4. 抓包工具 1. 应用层 在前面的博客中, 我们了解了 TCP/IP 五层协议模型: 应用层传输层网络层…...

Python-链表数据结构学习(1)

一、什么是链表数据? 链表是一种通过指针串联在一起的数据结构,每个节点由2部分组成,一个是数据域,一个是指针域(存放下一个节点的指针)。最后一个节点的指针域指向null(空指针的意思&#xff0…...

性能优化经验:关闭 SWAP 分区

关闭 SWAP 分区,特别是在性能敏感场景(如 Elasticsearch 服务)中,主要与 SWAP 的工作机制和对应用性能的影响有关。以下是详细原因: 1. SWAP 的工作机制导致高延迟 SWAP 是什么: SWAP 分区是系统将物理内存…...

SpringBoot小知识(2):日志

日志是开发项目中非常重要的一个环节,它是程序员在检查程序运行的手段之一。 1.日志的基础操作 1.1 日志的作用 编程期调试代码运营期记录信息: * 记录日常运营重要信息(峰值流量、平均响应时长……) * 记录应用报错信息(错误堆栈) * 记录运维过程数据(…...

java虚拟机——jvm是怎么去找垃圾对象的

JVM(Java虚拟机)通过特定的算法和机制来查找和识别垃圾对象,以便进行垃圾回收。以下是JVM查找垃圾对象的主要方法和步骤: 一、可达性分析法 JVM使用可达性分析法来识别垃圾对象。这种方法从一组称为“GC Roots”的对象作为起始点…...

Macos远程连接Linux桌面教程;Ubuntu配置远程桌面;Mac端远程登陆Linux桌面;可能出现的问题

文章目录 1. Ubuntu配置远程桌面2. Mac端远程登陆Linux桌面3. 可能出现的问题1.您用来登录计算机的密码与登录密钥环里的密码不再匹配2. 找不到org->gnome->desktop->remote-access 1. Ubuntu配置远程桌面 打开设置->共享->屏幕共享。勾选允许连接控制屏幕&…...

hadoop_HA高可用

秒懂HA HA概述HDFS-HA工作机制工作要点元数据同步参数配置手动故障转移自动故障转移工作机制相关命令 YARN-HA参数配置自动故障转移机制相关命令 附录Zookeeper详解 HA概述 H(high)A(avilable): 高可用,意味着必须有容错机制,不能因为集群故障…...

pam_env.so模块配置解析

在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 ​…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

如何在Windows本机安装Python并确保与Python.NET兼容

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...