C++设计模式:桥接模式(Bridge)
什么是桥接模式?
桥接模式(Bridge Pattern)是一个用来解耦的设计模式,它将抽象层和实现层分离开,让它们可以独立变化。用最简单的话来说,就是让你能够改变抽象的功能和具体的实现,而不需要修改对方的代码。
举个例子,想象你在做一个图形绘制的程序,你有很多图形(比如圆形、方形),而且每种图形可能有不同的绘制方式(比如屏幕绘制、打印机绘制)。如果你把所有的图形和绘制方式都写在一起,每次你增加一种新的绘制方式或新图形时,你都要修改大量的代码,这样就会让系统变得很复杂。
桥接模式的思路是:把**图形(抽象)和绘制方式(实现)**分开,每一部分都可以独立变化,互不干扰。这样一来,增加新的图形或者新的绘制方式时,就不需要修改现有的代码,只需要扩展新的类即可。
桥接模式的结构
桥接模式有两个重要部分:
- 抽象部分(比如图形的类型,如圆形、方形等)
- 实现部分(比如具体的绘制方式,如屏幕绘制、打印绘制等)
这两个部分通过“桥”连接起来,形成了一个灵活可扩展的结构。下面的代码结构就能帮助你理解这一点。
桥接模式的代码示例
假设我们要实现一个图形绘制的程序,支持不同的图形(圆形、方形)和不同的绘制方式(屏幕绘制、打印机绘制)。我们来看看怎么用桥接模式来实现。
#include <iostream>
#include <string>// 绘图接口(实现类接口)
class DrawingAPI {
public:virtual void drawCircle(double x, double y, double radius) = 0;virtual ~DrawingAPI() = default;
};// 具体实现:屏幕绘制
class ScreenDrawingAPI : public DrawingAPI {
public:void drawCircle(double x, double y, double radius) override {std::cout << "在屏幕上绘制圆形,位置: (" << x << ", " << y << "), 半径: " << radius << std::endl;}
};// 具体实现:打印机绘制
class PrinterDrawingAPI : public DrawingAPI {
public:void drawCircle(double x, double y, double radius) override {std::cout << "在打印机上绘制圆形,位置: (" << x << ", " << y << "), 半径: " << radius << std::endl;}
};// 图形类(抽象类)
class Shape {
protected:DrawingAPI* drawingAPI; // 这里持有一个指向绘图实现类的指针public:Shape(DrawingAPI* api) : drawingAPI(api) {} // 通过构造函数注入具体实现类virtual void draw() = 0; // 绘制图形的接口virtual void resize(double factor) = 0; // 调整图形大小virtual ~Shape() = default;
};// 扩展的具体图形类:圆形
class Circle : public Shape {
private:double x, y, radius; // 圆形的坐标和半径public:Circle(double x, double y, double radius, DrawingAPI* api) : Shape(api), x(x), y(y), radius(radius) {}void draw() override {drawingAPI->drawCircle(x, y, radius); // 将绘制任务委托给具体实现}void resize(double factor) override {radius *= factor; // 调整圆形的半径}
};int main() {ScreenDrawingAPI screenAPI; // 创建屏幕绘制实现PrinterDrawingAPI printerAPI; // 创建打印机绘制实现// 创建圆形对象,使用不同的绘制方式Circle circle1(1, 2, 3, &screenAPI); // 在屏幕上绘制Circle circle2(5, 6, 4, &printerAPI); // 在打印机上绘制circle1.draw(); // 屏幕绘制圆形circle2.draw(); // 打印机绘制圆形circle1.resize(2.0); // 改变圆形大小circle1.draw(); // 再次绘制,使用屏幕绘制return 0;
}
代码讲解
让我们一步步来解读这段代码,看看桥接模式是如何工作的。
1. 绘图接口(DrawingAPI
)
class DrawingAPI {
public:virtual void drawCircle(double x, double y, double radius) = 0;virtual ~DrawingAPI() = default;
};
这个类定义了一个绘制圆形的方法 drawCircle
,它只是一个接口,并不做具体的绘制工作。任何具体的绘制方式(比如屏幕绘制、打印机绘制)都需要实现这个接口。
2. 具体的绘图实现(ScreenDrawingAPI
和 PrinterDrawingAPI
)
class ScreenDrawingAPI : public DrawingAPI {
public:void drawCircle(double x, double y, double radius) override {std::cout << "在屏幕上绘制圆形,位置: (" << x << ", " << y << "), 半径: " << radius << std::endl;}
};class PrinterDrawingAPI : public DrawingAPI {
public:void drawCircle(double x, double y, double radius) override {std::cout << "在打印机上绘制圆形,位置: (" << x << ", " << y << "), 半径: " << radius << std::endl;}
};
这两个类分别实现了 DrawingAPI
接口,提供了不同的绘制方式。ScreenDrawingAPI
在屏幕上绘制圆形,PrinterDrawingAPI
在打印机上绘制圆形。
3. 抽象类(Shape
)
class Shape {
protected:DrawingAPI* drawingAPI; // 持有一个绘图实现类的指针public:Shape(DrawingAPI* api) : drawingAPI(api) {} // 通过构造函数注入具体的绘图实现virtual void draw() = 0; // 绘制图形的接口virtual void resize(double factor) = 0; // 调整图形大小
};
Shape
是一个抽象类,它定义了所有图形的共同接口:draw()
和 resize()
。关键是它持有一个 DrawingAPI
的指针,这样它可以将具体的绘制任务委托给实现类。
4. 具体图形类(Circle
)
class Circle : public Shape {
private:double x, y, radius; // 圆形的坐标和半径public:Circle(double x, double y, double radius, DrawingAPI* api) : Shape(api), x(x), y(y), radius(radius) {}void draw() override {drawingAPI->drawCircle(x, y, radius); // 调用具体绘图实现的drawCircle方法}void resize(double factor) override {radius *= factor; // 改变圆形的半径}
};
Circle
类继承自 Shape
,并实现了 draw()
和 resize()
方法。它通过 drawingAPI
指针来调用具体的绘制方法,实现了与绘制方式的解耦。
5. 客户端代码
在 main
函数中,我们创建了两个 Circle
对象,分别使用了 ScreenDrawingAPI
和 PrinterDrawingAPI
作为绘制实现。通过调用 circle1.draw()
和 circle2.draw()
,我们可以看到两个不同的绘制方式。
int main() {ScreenDrawingAPI screenAPI; // 屏幕绘制实现PrinterDrawingAPI printerAPI; // 打印机绘制实现// 创建两个圆形对象,分别使用不同的绘制方式Circle circle1(1, 2, 3, &screenAPI);Circle circle2(5, 6, 4, &printerAPI);circle1.draw(); // 屏幕绘制圆形circle2.draw(); // 打印机绘制圆形circle1.resize(2.0); // 改变圆形大小circle1.draw(); // 再次绘制,使用屏幕绘制return 0;
}
总结
桥接模式的主要优点就是解耦
。我们把抽象部分(如图形类型)和实现部分(如绘制方式)分开,避免了两者之间的紧耦合。这样我们可以很方便地扩展新的图形类型或新的绘制方式,而不需要修改现有的代码。
比如,如果你以后需要支持新的绘制方式(比如在Web上绘制),你只需要实现一个新的 DrawingAPI
类,不用改动任何图形类;同样,如果你需要增加新的图形类型(比如矩形),只需要扩展 Shape
类,不需要改动任何绘制实现。
桥接模式适用于需要将抽象和实现分离,并且它们可能会独立变化的场景。
本文由mdnice多平台发布
相关文章:
C++设计模式:桥接模式(Bridge)
什么是桥接模式? 桥接模式(Bridge Pattern)是一个用来解耦的设计模式,它将抽象层和实现层分离开,让它们可以独立变化。用最简单的话来说,就是让你能够改变抽象的功能和具体的实现,而不需要修改…...
spark3.x之后时间格式数据偶发报错org.apache.spark.SparkUpgradeException
3.x之后如果你去处理2.x生成的时间字符串数据,很容易遇到一个问题 Error operating ExecuteStatement: org.apache.spark.SparkUpgradeException: You may get a different result due to the upgrading of Spark 3.0: Fail to parse 20200725__cb90fcc3_8006_46…...

spring boot框架漏洞复现
spring - java开源框架有五种 Spring MVC、SpringBoot、SpringFramework、SpringSecurity、SpringCloud spring boot版本 版本1: 直接就在根下 / 版本2:根下的必须目录 /actuator/ 端口:9093 spring boot搭建 1:直接下载源码打包 2:运行编译好的jar包:actuator-testb…...

下载安装Android Studio
(一)Android Studio下载地址 https://developer.android.google.cn/studio 滑动到 点击下载文档 打开新网页 切换到english 
三、计算机视觉_08YOLO目标检测
0、前言 YOLO作为目前CV领域的扛把子,分类、检测等任务样样精通,本文将基于两个小案例,用YOLO做检测任务,看看效果如何 1、对图片内容做检测 假设我有一张名为picture.jpeg的图片,其内容如下 我将图片和代码放到了同…...

uniapp关闭sourceMap的生成,提高编译、生产打包速度
警告信息:[警告⚠] packageF\components\mpvue-echarts\echarts.min.js 文件体积超过 500KB,已跳过压缩以及 ES6 转 ES5 的处理,手机端使用过大的js库影响性能。 遇到问题:由于微信小程序引入了mpvue-echarts\echarts.min.js&…...

uniapp首页样式,实现菜单导航结构
实现菜单导航结构 1.导入字体图标库需要的文件 2.修改引用路径iconfont.css 3.导入到App.vue中 <style>import url(./static/font/iconfont.css); </style>导航区域代码 VUE代码 <template><view class"home"><!-- 导航区域 --><…...

uniapp-vue2引用了vue-inset-loader插件编译小程序报错
报错信息 Error: Vue packages version mismatch: - vue3.2.45 (D:\qjy-myApp\admin-app\node_modules\vue\index.js) - vue-template-compiler2.7.16 (D:\qjy-myApp\admin-app\node_modules\vue-template-compiler\package.json) This may cause things to work incorrectly.…...
Git命令大全(超详细)
Git 是一个分布式版本控制系统,用于跟踪计算机文件的更改,并协调多个用户之间的工作。下面是一份较为详细的 Git 命令大全,涵盖了从初始化仓库到日常使用中常见的操作。 1. 初始化与配置 设置用户信息: git config --global user.name &quo…...
【机器学习】机器学习学习笔记 - 监督学习 - 逻辑回归分类朴素贝叶斯分类支持向量机 SVM (可分类、可回归) - 04
逻辑回归分类 import numpy as np from sklearn import linear_modelX np.array([[4, 7], [3.5, 8], [3.1, 6.2], [0.5, 1], [1, 2], [1.2, 1.9], [6, 2], [5.7, 1.5], [5.4, 2.2]]) y np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])# 逻辑回归分类器 # solver:求解器&a…...

常见的数据结构---数组、链表、栈的深入剖析
目录 一、数组(Array) 二、链表(Linked List) 三、栈(Stack) 四、总结 数据结构是算法的基石,是程序设计的核心基础。不同的数据结构适用于不同的场景和需求,选择合适的数据结构能…...
前端开发:构建高质量用户体验的全方位指南(含实际案例与示例)
前端开发:构建高质量用户体验的全方位指南(含实际案例与示例) 在当今数字化时代,前端技术不仅是网页和应用的门面,更是连接用户与数字世界的桥梁。一个高质量的前端开发项目不仅能够提升用户体验(UX&#…...

Istio_05_Istio架构
Istio_05_Istio架构 ArchitectureControl PlanePilotCitadelGalley Data PlaneSidecarIstio-proxyPilot-agentMetadta Exchange Ambient Architecture 如: Istio的架构(控制面、数据面) Gateway: Istio数据面的出/入口网关 Gateway分为: Ingress-gateway、Egress-gateway外部访…...

MongoDB集群分片安装部署手册
文章目录 一、集群规划1.1 集群安装规划1.2 端口规划1.3 目录创建 二、mongodb安装(三台均需要操作)2.1 下载、解压2.2 配置环境变量 三、mongodb组件配置3.1 配置config server的副本集3.1.1 config配置文件3.1.2 config server启动3.1.3 初始化config …...
摄像头测距原理
以下是测距摄像头分类的 Markdown 格式输出,方便直接复制使用: 测距摄像头分类 1. 立体视觉(Stereo Vision)摄像头 原理:模仿人眼成像,利用两台摄像头获取不同视角的图像,通过视差计算场景深…...
基于centos7.9使用shell脚本部署k8s1.25平台
k8s 环境初始化安装Harbor安装k8s安装istio和kubevirt 使用脚本部署k8s1.25版本平台,网络插件使用flannel ,容器运行时ctr,部署包括harbor仓库,服务网格、kubevirt服务等 使用的centos7.9资源配置如下: 主机IP资源ma…...
11.29周五F34-Day10打卡
文章目录 1. 问问他能不能来。解析答案:【解析答案分析】【对比分析】【拓展内容】2. 问题是他能不能做。解析答案:【解析答案分析】3. 问题是我们能否联系得上她。(什么关系?动作 or 描述?)解析答案:【解析答案分析】【对比分析】4. 我们在讨论是否要开一个会。解析答案:…...

龙迅#LT8612UX适用于HDMI 转 HDMIVGA应用领域,分辨率高达4K60HZ,内置程序,方便调试!
1. 描述 LT8612UX 是一款 HDMI 转 HDMI&VGA 转换器,可将 HDMI2.0 数据流转换为 HDMI2.0 信号和模拟 RGB 信号。它还输出 8 通道 I2S 和 SPDIF 信号,可实现高质量的 7.1 通道音频。 LT8612UX 使用最新的 ClearEdge 技术,除了原始的 HDMI…...

C#学写了一个程序记录日志的方法(Log类)
1.错误和警告信息单独生产文本进行记录; 2.日志到一定内存阈值可以打包压缩,单独存储起来,修改字段MaxLogFileSizeForCompress的值即可; 3.Log类调用举例:Log.Txt(JB.信息,“日志记录内容”,"通道1"); usi…...
时间相关转换
Timestamp(date,type) { const zeroDate = new Date(date); if(type === startTime){ zeroDate.setHours(0, 0, 0, 0); } if(type === endTime){ zeroDate.setHours(23, 59, 59, 999); } return zeroDate.getTime(); }, //**时间戳转…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...