当前位置: 首页 > news >正文

Spark基本命令详解

文章目录

  • Spark基本命令详解
    • 一、引言
    • 二、Spark Core 基本命令
      • 1、Transformations(转换操作)
        • 1.1、groupBy(func)
        • 1.2、filter(func)
      • 2、Actions(动作操作)
        • 2.1、distinct([numTasks])
        • 2.2、sortBy(func, [ascending], [numTasks])
    • 三、Spark SQL 基本命令
      • 3.1、读取数据
    • 四、使用示例
      • 4.1、统计年龄小于25岁的人群的爱好排行榜
    • 五、总结

Spark基本命令详解

一、引言

Apache Spark 是一个开源的分布式计算系统,它提供了一个快速且通用的集群计算平台。本文将详细介绍Spark的一些基本命令及其使用示例,帮助开发者更好地理解和应用Spark。
在这里插入图片描述

二、Spark Core 基本命令

1、Transformations(转换操作)

在Spark中,转换操作是指从一个RDD到另一个RDD的操作。以下是一些常用的转换操作:

1.1、groupBy(func)

groupBy(func):按照func的返回值进行分组。

val rdd1: RDD[Int] = sc.makeRDD(Array(1, 3, 4, 20, 4, 5, 8),2)
val rdd2 = rdd1.groupBy(x => if(x % 2 == 0) "odd" else "even")
rdd2.collect.foreach(kv => {kv._2.foreach(it => println(kv._1, it))
})
1.2、filter(func)

filter(func):过滤,返回一个新的RDD,由func的返回值为true的那些元素组成。

val rdd1 = sc.makeRDD(Array("xiaoli", "laoli", "laowang", "xiaocang", "xiaojing", "xiaokong"))
val rdd2 = rdd1.filter(_.contains("xiao"))
rdd2.collect().foreach(println)

2、Actions(动作操作)

动作操作是指从RDD计算得到最终结果的操作。以下是一些常用的动作操作:

2.1、distinct([numTasks])

distinct([numTasks]):对RDD中元素执行去重操作,参数表示任务的数量,默认值和分区数保持一致。

val rdd1: RDD[Int] = sc.makeRDD(Array(10, 10, 2, 5, 3, 5, 3, 6, 9, 1))
rdd1.distinct().collect().foreach(println)
2.2、sortBy(func, [ascending], [numTasks])

sortBy(func, [ascending], [numTasks]):使用func先对数据进行处理,按照处理后结果排序。

val rdd1: RDD[Int] = sc.makeRDD(Array(1,3,4,10,4,6,9,20,30,16))
val rdd2: RDD[Int] = rdd1.sortBy(x => x)
println(s"默认排序: ${rdd2.collect().mkString(", ")}")

三、Spark SQL 基本命令

3.1、读取数据

在Spark SQL中,你可以使用SparkSession来读取数据,并进行处理。以下是读取目录下文本数据的示例:

val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL").getOrCreate()
val sc: SparkContext = spark.sparkContext
sc.setLogLevel("WARN")
val Schema: StructType = new StructType().add("name","string").add("age","integer").add("hobby","string")
val dataDF: DataFrame = spark.readStream.schema(Schema).json("D:\\data\\spark\\data")

四、使用示例

4.1、统计年龄小于25岁的人群的爱好排行榜

以下是一个使用Spark Structured Streaming进行实时数据处理的示例,统计年龄小于25岁的人群的爱好排行榜:

import spark.implicits._
val result: Dataset[Row] = dataDF.filter($"age" < 25).groupBy("hobby").count().sort($"count".desc)
result.writeStream.format("console").outputMode("complete").trigger(Trigger.ProcessingTime(0)).start().awaitTermination()

五、总结

Spark提供了丰富的基本命令,使得大数据处理变得简单高效。通过掌握这些基本命令,开发者可以更加灵活地处理各种复杂的数据处理任务。希望本文能够帮助你更好地理解和使用Spark。


版权声明:本博客内容为原创,转载请保留原文链接及作者信息。

参考文章

  • Spark:一文带你掌握Spark基础命令_spark命令-CSDN博客

相关文章:

Spark基本命令详解

文章目录 Spark基本命令详解一、引言二、Spark Core 基本命令1、Transformations&#xff08;转换操作&#xff09;1.1、groupBy(func)1.2、filter(func) 2、Actions&#xff08;动作操作&#xff09;2.1、distinct([numTasks])2.2、sortBy(func, [ascending], [numTasks]) 三、…...

Three.js 相机视角的平滑过渡与点击模型切换视角

在 Three.js 中&#xff0c;实现相机视角的平滑过渡和点击模型切换到查看模型视角是一个常见且有用的功能。这种效果不仅能提升用户体验&#xff0c;还能为场景互动添加更多的动态元素。 1. 基本设置 首先&#xff0c;我们需要创建一个基本的 Three.js 场景&#xff0c;包括相…...

jenken 打包linux包遇到的问题(环境变量)

环境变量问题 我们jenkens 打包的时候 远程打包 通过ssh 去在服务器上调用脚本 环境变量没有去自动加载 代码打包的时候总是提示相关的so文件找不到 解决方案在 相关程序的make之前 把环境变量加在前面 我这里直接将变量加载代码的最前面...

使用 Go 语言中的 Context 取消协程执行

使用 Go 语言中的 Context 取消协程执行 在 Go 语言中&#xff0c;协程&#xff08;goroutine&#xff09;是一种轻量级的线程&#xff0c;非常适合处理并发任务。然而&#xff0c;如何优雅地取消正在运行的协程是一个常见的问题。本文将通过一个具体的例子来展示如何使用 con…...

python图像彩色数字化

效果展示&#xff1a; 目录结构&#xff1a; alphabets.py GENERAL {"simple": "%#*-:. ","complex": "$B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_~<>i!lI;:,\"^. " } # Full list could be found here…...

cesium 3dtile ClippingPlanes 多边形挖洞ClippingPlaneCollection

原理就是3dtiles里面的属性clippingPlanes 采用ClippingPlaneCollection&#xff0c;构成多边形来挖洞。 其次就是xyz法向量挖洞 clippingPlanes: new this.ffCesium.Cesium.ClippingPlaneCollection({unionClippingRegions: true, // true 表示多个切割面能合并为一个有效的…...

docker 僵尸进程问题

docker僵尸进程 子进程结束后&#xff0c;父进程没有回收该进程资源&#xff08;父进程可能没有wait&#xff09;&#xff0c;子进程残留资源存放与内核中&#xff0c;就变为僵尸进程(zombie) 场景分析&#xff1a;python脚本A中执行B应用&#xff0c;将A部署在docker中&#…...

微软要求 Windows Insider 用户试用备受争议的召回功能

拥有搭载 Qualcomm Snapdragon 处理器的 Copilot PC 的 Windows Insider 计划参与者现在可以试用 Recall&#xff0c;这是一项臭名昭著的快照拍摄 AI 功能&#xff0c;在今年早些时候推出时受到了很多批评。 Windows 营销高级总监 Melissa Grant 上周表示&#xff1a;“我们听…...

husky,commit规范,生成CHANGELOG.md,npm发版

项目git提交工程化&#xff08;钩子&#xff0c;提交信息commit message&#xff09;&#xff0c;npm修改版本&#xff0c;需要涉及到的包&#xff1a; husky&#xff0c;允许在git钩子中执行不同的脚步&#xff0c;如commitlint&#xff0c;eslint&#xff0c;prettier&#…...

DETR:一种新颖的端到端目标检测与分割框架

DETR&#xff1a;一种新颖的端到端目标检测与分割框架 摘要&#xff1a; 随着深度学习技术的发展&#xff0c;目标检测和图像分割任务取得了显著的进步。然而&#xff0c;传统的基于区域提名的方法在处理这些问题时存在一定的局限性。为此&#xff0c;Facebook AI Research&am…...

前端js面试知识点思维导图(脑图)

如果看着不清晰可以去https://download.csdn.net/download/m0_73761441/90058523访问下载&#xff0c;无需积分 使用百度脑图制作&#xff0c;可以一键导入下面的文本生成自己的脑图 js相关面试题、知识点 数据类型 1. 数据类型分类&#xff1f;分别包含&#xff…...

【Java基础入门篇】一、变量、数据类型和运算符

Java基础入门篇 一、变量、数据类型和运算符 1.1 变量 计算机中的数据表示方式是&#xff1a;“二进制(0/1)”&#xff0c;但是同时也可以兼容其他进制&#xff0c;例如八进制、十进制、十六进制等。 Java变量的本质是&#xff1a;存储在固定空间的内容&#xff0c;变量名是…...

【llamafactory】安装与环境配置

拉取镜像 git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory创建虚拟环境 conda create -n llamafactory python3.10 conda activate llamafactory安装所需依赖 pip install -e ".[torch,vllm,optimum,auto_gptq]"...

Vue 3 + Vuex 埋点实现指南

在现代前端开发中&#xff0c;数据分析和用户行为追踪是不可或缺的部分。本文将介绍如何在 Vue 3 项目中实现埋点功能&#xff0c;具体使用 Vuex 进行状态管理&#xff0c;并通过自定义 Hook 实现埋点逻辑。 目录 项目结构实现埋点逻辑使用埋点功能总结 1.项目结构 我们将创…...

电子应用设计方案-30:智能扫地机器人系统方案设计

智能扫地机器人系统方案设计 一、引言 随着人们生活节奏的加快和对生活品质的追求&#xff0c;智能家居产品越来越受到消费者的青睐。智能扫地机器人作为一种能够自动清扫地面的智能设备&#xff0c;为人们节省了大量的时间和精力。本方案旨在设计一款功能强大、智能化程度高、…...

HTML飞舞的爱心(完整代码)

写在前面 HTML语言实现飞舞的爱心完整代码。 完整代码 <!DOCTYPE html> <html lang="en"><head><meta charset="UTF-8"><title>飞舞爱心</title><style>* {margin: 0;padding: 0;}html,body {overflow: hidd…...

android shader gl_Position是几个分量

在Android的OpenGL ES中&#xff0c;gl_Position是顶点着色器&#xff08;Vertex Shader&#xff09;的一个内置输出变量&#xff0c;它用于指定顶点在裁剪空间&#xff08;Clip Space&#xff09;中的位置。gl_Position是一个四维向量&#xff08;4-component vector&#xff…...

spine 动画层 动态权重

前奏.业务背景 这边想实现一个功能&#xff0c;项目中有 一只猫 猫的头会盯着逗猫棒移动。因为素材还没到所以这里使用了 spine 自带的猫头鹰。他的动画 刚好挺有针对性&#xff1a;&#xff08;关联上篇&#xff09;https://blog.csdn.net/nicepainkiller/article/details/144…...

《Python基础》之Python中可以转换成json数据类型的数据

目录 一、JSON简介 JSON有两种基本结构 1、对象&#xff08;Object&#xff09; 2、数组&#xff08;Array&#xff09; 二、将数据装换成json数据类型方法 三、在Python中&#xff0c;以下数据类型可以直接转换为JSON数据类型 1、字典&#xff08;Dictionary&#xff09…...

在oracle下载jdk显示400 Bad Request Request Header Or Cookie Too Large

下载JDK17&#xff0c;官网地址&#xff1a;【https://www.oracle.com/cn/java/technologies/downloads/#jdk17-windows】 问题&#xff1a; 出现 400 Bad Request: Request Header Or Cookie Too Large 错误&#xff0c;通常是由于浏览器存储的 Cookies 或请求头过大所导致的…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

C# winform教程(二)----checkbox

一、作用 提供一个用户选择或者不选的状态&#xff0c;这是一个可以多选的控件。 二、属性 其实功能大差不差&#xff0c;除了特殊的几个外&#xff0c;与button基本相同&#xff0c;所有说几个独有的 checkbox属性 名称内容含义appearance控件外观可以变成按钮形状checkali…...

二叉树-144.二叉树的前序遍历-力扣(LeetCode)

一、题目解析 对于递归方法的前序遍历十分简单&#xff0c;但对于一位合格的程序猿而言&#xff0c;需要掌握将递归转化为非递归的能力&#xff0c;毕竟递归调用的时候会调用大量的栈帧&#xff0c;存在栈溢出风险。 二、算法原理 递归调用本质是系统建立栈帧&#xff0c;而非…...

【工具教程】多个条形码识别用条码内容对图片重命名,批量PDF条形码识别后用条码内容批量改名,使用教程及注意事项

一、条形码识别改名使用教程 打开软件并选择处理模式&#xff1a;打开软件后&#xff0c;根据要处理的文件类型&#xff0c;选择 “图片识别模式” 或 “PDF 识别模式”。如果是处理包含条形码的 PDF 文件&#xff0c;就选择 “PDF 识别模式”&#xff1b;若是处理图片文件&…...

Pandas 可视化集成:数据科学家的高效绘图指南

为什么选择 Pandas 进行数据可视化&#xff1f; 在数据科学和分析领域&#xff0c;可视化是理解数据、发现模式和传达见解的关键步骤。Python 生态系统提供了多种可视化工具&#xff0c;如 Matplotlib、Seaborn、Plotly 等&#xff0c;但 Pandas 内置的可视化功能因其与数据结…...