Vue 3 的双向绑定原理
Vue 3 的双向绑定原理是基于 响应式系统 和 数据劫持 技术来实现的。在 Vue 3 中,双向绑定通常是通过 v-model 指令来完成的,它本质上是数据的双向同步:当数据改变时,视图自动更新,反之,视图的修改也会更新到数据。
Vue 3 双向绑定的原理分析
1. 响应式系统(reactivity)
Vue 3 使用了新的响应式系统来追踪对象属性的依赖关系。当一个数据发生变化时,Vue 会自动通知依赖的组件重新渲染。
- Proxy API:Vue 3 基于
Proxy对象来实现数据的代理,这样可以在数据访问时设置拦截器(getter 和 setter),从而实现数据的响应式。 - 依赖收集和触发更新:当组件访问某个响应式数据时,Vue 会在该属性的 getter 中收集依赖(即当前组件的渲染函数)。当该数据发生变化时,Vue 会触发 setter,通知相关的依赖(组件)更新。
2. 双向绑定的核心原理
在 Vue 中,双向绑定的关键是 v-model 指令。我们通过 v-model 在父子组件之间同步数据。具体来说,Vue 通过以下几个步骤来实现双向绑定:
-
组件数据初始化:
在组件中,父组件会传递一个值给子组件,子组件通过v-model绑定该值。Vue 会通过props将父组件的数据传递给子组件,子组件在内部将这个值设置为响应式数据。 -
v-model的双向绑定:- 在子组件中,
v-model会自动将value作为props,并且会把@update:modelValue作为事件来处理数据的双向绑定。 v-model本质上会在组件中生成一个modelValue(或通过自定义修改名称的形式)作为props,并且会监听子组件的@update:modelValue事件来同步数据回父组件。
- 在子组件中,
-
数据的同步:
- 当用户在子组件中的输入框、选择框等表单元素发生改变时,事件会触发(例如
input或change事件),通过@update:modelValue事件把新的值传递给父组件。 - 父组件收到更新的值后,通过
v-model再更新它的值,触发子组件重新渲染,完成双向绑定。
- 当用户在子组件中的输入框、选择框等表单元素发生改变时,事件会触发(例如
3. 代码示例
父组件:
<template><ChildComponent v-model="parentData" />
</template><script>
import { ref } from 'vue'
import ChildComponent from './ChildComponent.vue'export default {components: { ChildComponent },setup() {const parentData = ref('Hello World')return { parentData }}
}
</script>
子组件(ChildComponent):
<template><input type="text" :value="modelValue" @input="updateValue" />
</template><script>
export default {props: {modelValue: {type: String,required: true}},emits: ['update:modelValue'],setup(props, { emit }) {const updateValue = (event) => {emit('update:modelValue', event.target.value)}return { updateValue }}
}
</script>
4. v-model 的工作原理
v-model会绑定到子组件的modelValueprop 和父组件的变量(如parentData)。当子组件的input改变时,触发@input事件,通过update:modelValue事件将新的值传递回父组件,从而完成双向绑定。
总结
Vue 3 的双向绑定实现是通过:
- 响应式系统(Proxy + Dependency Tracking)来追踪数据变化。
v-model指令来实现父子组件间的数据同步。- 事件触发和数据更新(通过
@update:modelValue)实现父子数据的双向绑定。
这种方式相比于 Vue 2 中的 Object.defineProperty 和 data 方式,Vue 3 的响应式系统更加高效且易于扩展。
相关文章:
Vue 3 的双向绑定原理
Vue 3 的双向绑定原理是基于 响应式系统 和 数据劫持 技术来实现的。在 Vue 3 中,双向绑定通常是通过 v-model 指令来完成的,它本质上是数据的双向同步:当数据改变时,视图自动更新,反之,视图的修改也会更新…...
如何使用 Chrome 无痕浏览模式访问网站?
无痕浏览(Incognito Mode)是 Google Chrome 浏览器提供的一种隐私保护功能,它允许用户在一个独立的会话中浏览网页,而不会记录用户的浏览历史、下载历史、表单数据等。这对于希望保护个人隐私或进行临时性匿名浏览的用户来说非常有…...
Idea 2024.3 突然出现点击run 运行没有反应,且没有任何提示。
写这篇文章的目的是为了提供一个新的解决思路,因为存在同病不同原因。 如果你进行了1. 检查运行配置 (Run Configuration) 2. 清理和重建项目 3. 清除缓存并重启 IDEA 4.排除kotlin 5.重装idea等等操作之后仍然没有解决,可以试着按一下步骤进行解决。 检…...
【小白学机器学习36】关于独立概率,联合概率,交叉概率,交叉概率和,总概率等 概念辨析的例子
目录 1 先说结论 2 联合概率 3 边缘概率 4 (行/列)边缘概率的和 总概率1 5 条件概率 5.1 条件概率的除法公式 5.2 条件概率和联合概率区别 1 先说结论 关于独立概率,联合概率,交叉概率,交叉概率和,总概率 类型含义 …...
Spring Boot 项目——分层架构
在创建一个 Spring Boot 项目时,为了提高代码的可维护性、可扩展性和清晰度,通常会按照一定的分层架构进行设计。常见的分层架构包括以下几层: 1. Controller 层(Web 层) 作用:接收用户请求,并…...
wordpress网站首页底部栏显示网站备案信息
一、页脚文件footer.php 例如,wordpress主题使用的是simple-life主题,服务器IP为192.168.68.89,在wordpress主题文件中有个页脚文件footer.php,这是一个包含网站页脚代码的文件。 footer.php 路径如下: /www/wwwroot/192.168.68…...
python面向对象编程练习
学生成绩管理系统 定义一个Student类,包括属性(姓名、成绩)和方法(设置成绩、获取成绩、计算平均成绩)。 实例化多个学生对象并调用方法。 功能说明: Student 类: init(self, name):…...
OpenCV_Code_LOG
孔洞填充 void fillHole(const Mat srcBw, Mat &dstBw) {Size m_Size srcBw.size();Mat TempMat::zeros(m_Size.height2,m_Size.width2,srcBw.type());//延展图像srcBw.copyTo(Temp(Range(1, m_Size.height 1), Range(1, m_Size.width 1)));cv::floodFill(Temp, Point(…...
力扣第 74 题是 搜索二维矩阵
题目描述 给定一个 m x n 的矩阵 matrix 和一个目标值 target,请你编写一个函数来判断目标值 target 是否在矩阵中。 每行的元素按升序排列。每列的元素按升序排列。 示例 1 输入: matrix [[1, 4, 7, 11],[2, 5, 8, 12],[3, 6, 9, 16],[10, 13, 14…...
[极客大挑战 2019]BabySQL--详细解析
信息搜集 进入界面: 输入用户名为admin,密码随便输一个: 发现是GET传参,有username和password两个传参点。 我们测试一下password点位能不能注入: 单引号闭合报错,根据报错信息,我们可以判断…...
实现Linux平台自定义协议族
一 简介 我们常常在Linux系统中编写socket接收TCP/UDP协议数据,大家有没有想过它怎么实现的,如果我们要实现socket接收自定义的协议数据又该怎么做呢?带着这个疑问,我们一起往下看吧~~ 二 Linux内核函数简介 在Linux系统中要想…...
RL78/G15 Fast Prototyping Board Arduino IDE 平台开发过程
这是一篇基于RL78/G15 Fast Prototyping Board的Arduino IDE开发记录 RL78/G15 Fast Prototyping Board硬件简介(背景)基础测试(方法说明/操作说明)开发环境搭建(方法说明/操作说明代码结果)Arduino IDE RL…...
YOLOv11 NCNN安卓部署
YOLOv11 NCNN安卓部署 前言 yolov11 NCNN安卓部署 目前的帧率可以稳定在20帧左右,下面是这个项目的github地址:https://github.com/gaoxumustwin/ncnn-android-yolov11 上面的检测精度很低时因为这个模型只训练了5个epoch,使用3090训练一个…...
对载入的3dtiles进行旋转、平移和缩放变换。
使用 params: {tx: 129.75845, //模型中心X轴坐标(经度,单位:十进制度)//小左ty: 46.6839, //模型中心Y轴坐标(纬度,单位:十进制度)//小下tz: 28, //模型中心Z轴坐标(高…...
Rust个人认为将抢占C和C++市场,逐渐成为主流的开发语言
本人使用C开发8年、C#开发15年、中间使用JAVA开发过项目、后期在学习过程中发现了Rust语言说它是最安全的语言,能够解决C、C的痛点、于是抽出一部分时间网上买书,看网上资料进行学习,这一学习起来发现和其它语言比较起来,在编码的…...
在openEuler中使用top命令
在openEuler中使用top命令 概述 top 命令是Linux系统中最常用的实时性能监控工具之一,允许用户查看系统的整体状态,包括CPU使用率、内存使用情况、运行中的进程等。本文档将详细介绍如何在openEuler操作系统中有效利用top命令进行系统监控。 启动top命令 打开终端并输入t…...
探索文件系统,Python os库是你的瑞士军刀
文章目录 探索文件系统,Python os库是你的瑞士军刀第一部分:背景介绍第二部分:os库是什么?第三部分:如何安装os库?第四部分:简单库函数使用方法1. 获取当前工作目录2. 改变当前工作目录3. 列出目…...
【小白学机器学习41】如何从正态分布的总体中去抽样? 获得指定正态分布的样本的2种方法
目录 1 目标:使用2种方法,去从正态分布的总体中去抽样,获得样本 1.1 step1: 首先,逻辑上需要先有符合正态分布的总体population 1.2 从总体中取得样本,模拟抽样的过程 2 从正态分布抽样的方法1 3 从正态分布抽样…...
将VSCode设置成中文语言环境
目录 VSCode默认是英文语言环境,这对于像我这种英语比较菜的人来说不是那么友好 另外也习惯了用中文,所以接下来介绍下如何将VSCode设置成中文语言环境。 1、打开VSCode软件,按快捷键【CtrlShiftP】 2、在弹出的搜索框中输入【configure l…...
Applied Intelligence投稿
一、关于手稿格式: 1、该期刊是一个二区的,模板使用Springer nature格式, 期刊投稿要求,详细期刊投稿指南,大部分按Soringernature模板即可,图片表格声明参考文献命名要求需注意。 2、参考文献ÿ…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...
9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
WEB3全栈开发——面试专业技能点P7前端与链上集成
一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染(SSR)与静态网站生成(SSG) 框架,由 Vercel 开发。它简化了构建生产级 React 应用的过程,并内置了很多特性: ✅ 文件系…...
门静脉高压——表现
一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...
【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...
