算法训练(leetcode)二刷第三十一天 | 1049. 最后一块石头的重量 II、494. 目标和、*474. 一和零
刷题记录
- 1049. 最后一块石头的重量 II
- *494. 目标和
- 二维数组
- 滚动数组
- *474. 一和零
1049. 最后一块石头的重量 II
leetcode题目地址
本题与416. 分割等和子集类似。依旧是01背包问题,本题尽可能将石头分为相等(相近)的两堆,然后两堆求差取绝对值既可。dp[j]表示背包容量为j时背包中物品的最大重量。
时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n ) O(n) O(n)
// java
class Solution {public int lastStoneWeightII(int[] stones) {int sum = 0;for(int i=0; i<stones.length; i++){sum += stones[i];}int target = sum / 2;int[] dp = new int[target+1];for(int i=0; i<stones.length; i++){for(int j=target; j>=stones[i]; j--){dp[j] = Math.max(dp[j], dp[j-stones[i]]+stones[i]);}}return Math.abs(sum-dp[target]*2);}
}
*494. 目标和
leetcode题目地址
二维数组
首先对所有数字求和得到sum。
设添加‘+’的数字和为x,则添加‘-’的数字之和为sum-x,则有:target = x - ( sum - x ).
则,x = ( target + sum ) / 2. 这样就将问题简化为求能够组合(添加‘+’)成 x 的数字和的方案数。
当上式中的除以2无法整除时,说明当前数组无法组合出target的方案,返回0.
要求组合成x的方案数,则将x作为背包容量。
dp[i][j]记录背包容量为 j 时,使用 0-i 的物品可以(恰好)装满背包的方案数。
当 j=0 时,即背包容量为0,若 0-i 中没有0,则只有1种方案就是不放物品;若 0-i 中有 k 个 0,则方案数为 2 ^ k(这里的来由是:每一个0都有2个状态,即选或不选,因此k个0就有 2 ^ k种组合) ;
当 i=0 时,即只使用第0个物品,只有 j == nums[0] 时的方案为1。
- 当访问到物品i时,若背包容量 j 可以放下当前物品 nums[i],则当前物品有两种状态,即选或不选。
- 选:背包需要腾出当前物品大小的空间来存放当前物品,即dp[i-1][j-nums[i]]
- 不选:dp[i-1][j]
则有:dp[i][j] = dp[i-1][j-nums[i]] + dp[i-1][j]
- 若背包容量 j 放不下当前物品 nums[i], 则dp[i][j] = dp[i-1][j].
时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n 2 ) O(n^2) O(n2)
// java
class Solution {public int findTargetSumWays(int[] nums, int target) {int sum = 0;for(int i=0; i<nums.length; i++){sum += nums[i];}if(Math.abs(target)>sum) return 0;if((sum+target)%2==1) return 0;int x = (sum+target)/2;int[][] dp = new int[nums.length][x+1];if(nums[0]<=x) dp[0][nums[0]] = 1;int zeroCnt = 0;for(int i=0; i<nums.length; i++){if(nums[i] == 0){zeroCnt++;}dp[i][0] = (int)Math.pow(2, zeroCnt);}for(int i=1; i<nums.length; i++){for(int j=0; j<=x; j++){if(j>=nums[i]){dp[i][j] = dp[i-1][j] + dp[i-1][j-nums[i]];}else{dp[i][j] = dp[i-1][j];}}}return dp[nums.length-1][x];}
}
滚动数组
思路同上,只是有一些小细节需要处理:
- 所有元素都只使用一次,因此遍历背包容量需要从后向前。
- 在初始化第一个元素即dp[0]时,需要注意,若nums[0]为0,则有2种方案(选或不选),反之只有一种方案(不选)。
时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n ) O(n) O(n)
// java
class Solution {public int findTargetSumWays(int[] nums, int target) {int sum = 0;for(int i=0; i<nums.length; i++){sum += nums[i];}if((sum+target) % 2 != 0) return 0;if(Math.abs(target) > sum) return 0;int x = (sum+target)/2;int[] dp = new int[x+1];if(x >= nums[0]) dp[nums[0]] = 1;dp[0] = (nums[0]==0) ? 2 : 1;for(int i=1; i<nums.length; i++){for(int j=x; j>=0; j--){if(j >= nums[i]){dp[j] += dp[j-nums[i]];}}}return dp[x];}
}
*474. 一和零
leetcode题目地址
本题是一个二维的01背包问题,背包容量是两个维度,这里使用的是滚动数组思想(二维),若要用普通的dp算法则需要使用三维数组。
dp[i][j] 代表至多 i 个 0,j 个 1 的子集个数。
由于是子集个数,不同于上题的方案数, 因此这里在留出当前物品空间后需要加1.
由于是滚动数组,则在更新时需要与当前值求最大值保留。
即:dp[i][j] = max(dp[i][j], dp[i-zeroCnt][j-oneCnt]+1).
时间复杂度: O ( n 3 ) O(n^3) O(n3) -> O ( k m n ) O(kmn) O(kmn)
空间复杂度: O ( n 2 ) O(n^2) O(n2) -> O ( m n ) O(mn) O(mn)
// java
class Solution {public int findMaxForm(String[] strs, int m, int n) {int[][] dp = new int[m+1][n+1];for(int k=0; k<strs.length; k++){int zeroCnt = 0, oneCnt = 0;char[] arr = strs[k].toCharArray();// 统计当前字符串中的0、1个数for(int j=0; j<arr.length; j++){if(arr[j] == '0') zeroCnt++;else oneCnt++;}// 01背包for(int i=m; i>=zeroCnt; i--){for(int j=n; j>=oneCnt; j--){dp[i][j] = Math.max(dp[i][j], dp[i-zeroCnt][j-oneCnt]+1);}}}return dp[m][n];}
}
相关文章:
算法训练(leetcode)二刷第三十一天 | 1049. 最后一块石头的重量 II、494. 目标和、*474. 一和零
刷题记录 1049. 最后一块石头的重量 II*494. 目标和二维数组滚动数组 *474. 一和零 1049. 最后一块石头的重量 II leetcode题目地址 本题与416. 分割等和子集类似。依旧是01背包问题,本题尽可能将石头分为相等(相近)的两堆,然后…...
软件测试丨Pytest生命周期与数据驱动
Pytest的生命周期概述 Pytest 是一个强大的测试框架,提供了丰富的特性来简化测试执行。它的生命周期包括多个阶段,涉及从准备测试、执行测试到报告结果的完整流程。因此,理解Pytest的生命周期将帮助我们更好地设计和管理测试用例。 开始阶段…...
Figma入门-原型交互
Figma入门-原型交互 前言 在之前的工作中,大家的原型图都是使用 Axure 制作的,印象中 Figma 一直是个专业设计软件。 最近,很多产品朋友告诉我,很多原型图都开始用Figma制作了,并且很多组件都是内置的,对…...
网络安全防范技术
1 实践内容 1.1 安全防范 为了保障"信息安全金三角"的CIA属性、即机密性、完整性、可用性,信息安全领域提出了一系列安全模型。其中动态可适应网络安全模型基于闭环控制理论,典型的有PDR和P^2DR模型。 1.1.1 PDR模型 信息系统的防御机制能抵抗…...
Java - JSR223规范解读_在JVM上实现多语言支持
文章目录 1. 概述2. 核心目标3. 支持的脚本语言4. 主要接口5. 脚本引擎的使用执行JavaScript脚本执行groovy脚本1. Groovy简介2. Groovy脚本示例3. 如何在Java中集成 Groovy4. 集成注意事项 6. 与Java集成7. 常见应用场景8. 优缺点9. 总结 1. 概述 JSR223(Java Spe…...
win10系统部署RAGFLOW+Ollama教程
本篇主要基于linux服务器部署ragflowollama,其他操作系统稍有差异但是大体一样。 一、先决条件 CPU ≥ 4核; RAM ≥ 16 GB; 磁盘 ≥ 50 GB; Docker ≥ 24.0.0 & Docker Compose ≥ v2.26.1。 如果尚未在本地计算机ÿ…...
基于Python制作一个简易UI界面
基于Python制作一个简易UI界面 目录 基于Python制作一个简易UI界面1 原理简介2 编写程序3 程序测试 1 原理简介 这里用到了Python自带的UI库tkinter。 tkinter 是 Python 的标准 GUI(图形用户界面)库,用于创建和管理图形界面。它提供了一个简…...
鲁菜大师程伟华到访金宫川派味业
共工新闻社11月29日电(范琦)上周,中国鲁菜大师、首批中国烹饪大师名厨程伟华到访金宫川派味业总部基地。这位从厨51年、坚持传承鲁菜的行业大师人物,深入了解了金宫川派的品牌文化,参观了金宫自动生产车间,…...
Linux设置jar包开机自启动
本文详细描述了如何在Linux服务器上创建并配置jar包的自启动脚本,包括编辑/etc/init.d/jar_auto.sh以设置环境变量,将jar包添加到rc.local以开机启动,以及提升脚本文件权限确保自动执行。 1、准备工作 Linux中Java的路径 项目jar包绝对路径 2…...
IoTDB 常见问题 QA 第一期
开始!关于 IoTDB 的 Q&A 我们将定期汇总社区讨论频繁的问题,并展开进行详细回答,通过积累常见问题“小百科”,方便大家使用 IoTDB。 Q1:WAL 堆积导致写入失败 问题及现象 集群报错: The write is rejec…...
【linux学习指南】linux捕捉信号
文章目录 📝前言🌠 信号捕捉的流程🌉 sigaction 🌠穿插话题-操作系统是怎么运⾏的🌉 硬件中断🌉时钟中断 🚩总结 📝前言 🌠 信号捕捉的流程 如果信号的处理动作是⽤⼾⾃定…...
git如何快速拉取已经提交的mr进行验证
参考:https://stackoverflow.com/questions/44992512/how-to-checkout-merge-request-locally-and-create-new-local-branch Pull merge request to new branch git fetch origin merge-requests/REQUESTID/head:BRANCHNAME i.e git fetch origin merge-requests/…...
【阿来来gis规划师工具箱说明书】h07四分标注
背景 在做arcmap的四分标注前,已经做好了二行三行的标注,以及在pro中做好了四分标注。这个四分标注做了好些版本,都达不到想要的效果。最终使用了静态标注的形式来做。 制作思路 新建两个承接标注文字的文本字段,考虑一般标注超…...
【大数据学习 | 面经】HDFS的三副本机制和编码机制
1. hdfs的三副本机制 hdfs的三副本机制是其核心特性之一,旨在确保数据的高可用性和容错性。通过将每个文件的数据块复制三个副本,并分散存储在不同的DateNode上,hdfs能够在节点故障的时候提供数据冗余和持续访问的能力。 三副本机制的工作原…...
lua-cjson 例子
apt install -y lua-cjson 安装 编辑 tmp.lua cjson require "cjson" p 666 d "23.42" payload{"d":[{"pres":..(p)..,"temp":"..(d).."}]} print("payload " .. payload) j cjson.decode(payloa…...
java面向对象知识点: 封装,构造,重载
目录 封装 封装知识点 private(私有) public(公共) 二、getter和setter方法 getter方法(访问器方法) setter方法(修改器方法) 三、封装类的设计原则 单一职责原则 高内聚性 一…...
go的math/rand随机数生成器
伪随机数生成器,默认情况下随机数种子是固定的, **注意:**固定的随机数种子每次生成的随机数都是相同的随机数序列 一、基础用法 math/rand 包提供了随机数生成的方法。常用的函数包括: rand.Int():返回一个伪随机…...
JiaJia-CP-1,2,3的WP(2)
一.JiaJia-CP-2 一看题目,聊天软件,用的什么聊天软件直接userassist看运行过什么程序 vol -f JiaJia_Co.raw --profileWin7SP1x64 userassist 发现Telegram.exe(小飞机) 可能性很大啊(真是个摸鱼大神) 除此之外,filescan也能看到࿰…...
3DMAX星空图像生成器插件使用方法详解
3DMAX星空图像生成器插件,一键生成星空或夜空的二维图像。它可用于创建天空盒子或空间场景,或作为2D艺术的天空背景。 【主要特点】 -单击即可创建星空图像或夜空。 -星数、亮度、大小、形状等参数。 -支持任何图像大小(方形)。…...
ROS2 系列学习教程(总目录)
ROS2Learning ROS1 系列学习教程(总目录) 一、ROS2 简介 1.1 ROS2简介及学习资源汇总 二、ROS2 基础 2.1 ROS2安装详细教程(以Humble为例) 2.2 ROS2 构建系统 colcon 介绍、安装与使用 2.3 ROS2 与 ROS1 编码方式对比 ROS2 与 ROS1 编码方式对比&am…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...
