当前位置: 首页 > news >正文

llamaindex实战-ChatEngine-ReAct Agent模式

概述

ReAct 是一种基于Agent的聊天模式,构建在数据查询引擎之上。对于每次聊天交互,代理都会进入一个 ReAct 循环:

  • 首先决定是否使用查询引擎工具并提出适当的输入

  • (可选)使用查询引擎工具并观察其输出

  • 决定是否重复或给出最终答复

这种方法很灵活,因为它可以灵活地选择是否查询知识库,它是基于Agent来实现的。然而,表现也更依赖于LLM的质量。您可能需要进行更多强制,以确保它选择在正确的时间查询知识库,而不是产生幻觉答案。

实现逻辑

  1. 构建和使用本地大模型。这里使用的是gemma2这个模型,也可以配置其他的大模型。

  2. 从文档中构建索引

  3. 把索引转换成查询引擎:index.as_chat_engine,并设置chat_mode为react。

注意:我这里使用的是本地大模型gemm2,效果可能没有openai的好。

实现代码

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.ollama import Ollamalocal_model = "/opt/models/BAAI/bge-base-en-v1.5"# bge-base embedding model
Settings.embed_model = HuggingFaceEmbedding(model_name=local_model)
# ollama
Settings.llm = Ollama(model="gemma2", request_timeout=360.0)from llama_index.core import VectorStoreIndex, SimpleDirectoryReaderdata = SimpleDirectoryReader(input_dir="./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(data)# 设置使用react模式
chat_engine = index.as_chat_engine(chat_mode="react", llm=Settings.llm, verbose=True)response = chat_engine.chat( "Use the tool to answer what did Paul Graham do in the summer of 1995?")

输出

从以下输出可以看到,不同大模型的输出不太相同。Agent通过查询引擎获取到了对应的索引和文本信息。

$ python chat_react.py 
> Running step 3e748b23-a1bb-4807-89f6-7bda3b418b86. Step input: Use the tool to answer what did Paul Graham do in the summer of 1995?
Thought: The current language of the user is: English. I need to use a tool to help me answer the question.
Action: query_engine_tool
Action Input: {'input': 'What did Paul Graham do in the summer of 1995?'}
Observation: He worked on his Lisp-based web server.  
​
> Running step 5f4592b6-f1d0-4fcf-8b03-a50d46641ef2. Step input: None
Thought: I can answer without using any more tools. I'll use the user's language to answer
Answer: In the summer of 1995, Paul Graham worked on his Lisp-based web server.

实现分析

从以下实现代码中可以看到,当聊天模式是REACT模式时,会创建一个AgentRunner,并把查询引擎作为工具放入Agent工具列表中。

  def as_chat_engine(self,chat_mode: ChatMode = ChatMode.BEST,llm: Optional[LLMType] = None,**kwargs: Any,) -> BaseChatEngine:    if chat_mode in [ChatMode.REACT, ChatMode.OPENAI, ChatMode.BEST]:# use an agent with query engine tool in these chat modes# NOTE: lazy importfrom llama_index.core.agent import AgentRunnerfrom llama_index.core.tools.query_engine import QueryEngineTool
​# convert query engine to toolquery_engine_tool = QueryEngineTool.from_defaults(query_engine=query_engine)
​return AgentRunner.from_llm(tools=[query_engine_tool],llm=llm,**kwargs,)

小结

通过REACT模式,会创建一个Agent,并把查询引擎作为工具放到该Agent中。然后,通过查询引擎的能力来查询想要的内容。

相关文章:

llamaindex实战-ChatEngine-ReAct Agent模式

概述 ReAct 是一种基于Agent的聊天模式,构建在数据查询引擎之上。对于每次聊天交互,代理都会进入一个 ReAct 循环: 首先决定是否使用查询引擎工具并提出适当的输入 (可选)使用查询引擎工具并观察其输出 决定是否重复…...

redis快速进门

、数据库类型认识 关系型数据库 关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。 SQL 语句(标准数据查询语言)就是一种基于关系型数据库的语言,用于执行…...

从0开始linux(39)——线程(2)线程控制

欢迎来到博主的专栏:从0开始linux 博主ID:代码小豪 文章目录 线程创建线程标识符线程参数多线程竞争资源 回收线程detach 线程退出pthread_cancel 线程创建 线程创建的函数为pthread_create。该函数是包含在posix线程库当中,posix线程是C语言…...

International Journal of Medical Informatics投稿经历时间节点

20240423,完成投稿 20240612,按编辑要求修改后再投, with editor 20240613,under review,completed 0, accepted 0, invitation 2. 20240620, under review,completed 0, accepted 1, invitation 2. 20240626, unde…...

BUUCTF—Reverse—Java逆向解密(10)

程序员小张不小心弄丢了加密文件用的秘钥,已知还好小张曾经编写了一个秘钥验证算法,聪明的你能帮小张找到秘钥吗? 注意:得到的 flag 请包上 flag{} 提交 需要用专门的Java反编译软件:jd-gui 下载文件,发现是个class文…...

CLIP-MMA: Multi-Modal Adapter for Vision-Language Models

当前的问题 CLIP-Adapter仅单独调整图像和文本嵌入,忽略了不同模态之间的交互作用。此外,适应性参数容易过拟合训练数据,导致新任务泛化能力的损失。 动机 图1所示。多模态适配器说明。 通过一种基于注意力的 Adapter ,作者称之…...

三维扫描仪-3d扫描建模设备自动检测尺寸

在现代工业制造领域,三维扫描仪已成为实现高精度尺寸检测的关键设备。CASAIM自动化智能检测系统以其自动化三维立体扫描技术,为产品尺寸的自动检测提供了高效、可靠的解决方案。 CASAIM自动化智能检测系统通过非接触式测量方式,通过激光扫描…...

vue3+ant design vue实现日期选择器默认显示当前年,并限制用户只能选择当前年及之前~

1、思路:之前想拿当前年直接做赋值操作,实际上是行不通的,因为组件本身有数据格式限制,会出现报错,然后索性直接获取当前日期(YYYY-MM-DD)赋值给日期组件,这样不管你用的是年&#x…...

【electron-vite】搭建electron+vue3框架基础

一、拉取项目 electron-vite 中文文档地址: https://cn-evite.netlify.app/guide/ 官网网址:https://evite.netlify.app/ 版本 vue版本:vue3 构建工具:vite 框架类型:Electron JS语法:TypeScript &…...

05《存储器层次结构与接口》计算机组成与体系结构 系列课

目录 存储器层次结构概述 层次结构的定义 存储器的排名 存储器接口 处理器与存储器的速度匹配 存储器接口的定义 存储器访问命中率 两种接口 第1种方式:并行 命中率的计算 存储器访问时间 第2种方式:逐级 结语 大家好,欢迎回来。…...

elasticsearch报错fully-formed single-node cluster with cluster UUID

1.问题描述 k8s集群内部署的es中间件起不来,查看日志发现如下警告,节点发现功能开启,但是目前我是单节点服务,所以尝试编辑sts将节点发现功能去掉或者在部署时将你的sts的yaml文件和chart文件修改重新部署以去掉该功能 {"t…...

Milvus×Florence:一文读懂如何构建多任务视觉模型

近两年来多任务学习(Multi-task learning)正取代传统的单任务学习(single-task learning),逐渐成为人工智能领域的主流研究方向。其原因在于,多任务学习可以让我们以最少的人力投入,获得尽可能多…...

DAPP

02-DAPP 1 啥是 DApp? DApp,部署在链上的去中心化的应用。 DApp 是开放源代码,能运行在分布式网络上,通过网络中不同对等节点相互通信进行去中心化操作的应用。 DAPP 开放源代码,才能获得人的信任。如比特币&#xff…...

生产环境中,nginx 最多可以代理多少台服务器,这个应该考虑哪些参数 ?怎么计算呢

生产环境中,nginx 最多可以代理多少台服务器,这个应该考虑哪些参数 ?怎么计算呢 关键参数计算方法评估步骤总结 在生产环境中,Nginx最多可以代理的服务器数量并没有一个固定的限制,它取决于多个因素,包括Ng…...

【深度学习|目标跟踪】StrongSORT 详解(以及StrongSORT++)

StrongSort详解 1、论文及源码2、DeepSORT回顾3、StrongSORT的EMA4、StrongSORT的NSA Kalman5、StrongSORT的MC6、StrongSORT的BOT特征提取器7、StrongSORT的AFLink8、StrongSORT的GSI模块 1、论文及源码 论文地址:https://arxiv.org/pdf/2202.13514 源码地址&#…...

23种设计模式-原型(Prototype)设计模式

文章目录 一.什么是原型设计模式?二.原型模式的特点三.原型模式的结构四.原型模式的优缺点五.原型模式的 C 实现六.原型模式的 Java 实现七. 代码解析八.总结 类图: 原型设计模式类图 一.什么是原型设计模式? 原型模式(Prototype…...

Qt—QLineEdit 使用总结

文章参考:Qt—QLineEdit 使用总结 一、简述 QLineEdit是一个单行文本编辑控件。 使用者可以通过很多函数,输入和编辑单行文本,比如撤销、恢复、剪切、粘贴以及拖放等。 通过改变 QLineEdit 的 echoMode() ,可以设置其属性,比如以密码的形式输入。 文本的长度可以由 m…...

go-zero使用自定义模板实现统一格式的 body 响应

前提 go环境的配置、goctl的安装、go-zero的基本使用默认都会 需求 go-zero框架中,默认使用goctl命令生成的代码并没有统一响应格式,现在使用自定义模板实现统一响应格式: {"code": 0,"msg": "OK","d…...

BUGKU printf

整体思路 实现循环-->获取libc版本和system函数地址->将strcpy的got表项修改为system并获得shell 第一步:实现循环 从汇编语句可以看出,在每次循环结束时若0x201700处的值是否大于1则会继续循环。 encode1会将编码后的结果保存至0x2015c0处&am…...

深度学习:梯度下降法

损失函数 L:衡量单一训练样例的效果。 成本函数 J:用于衡量 w 和 b 的效果。 如何使用梯度下降法来训练或学习训练集上的参数w和b ? 成本函数J是参数w和b的函数,它被定义为平均值; 损失函数L可以衡量你的算法效果&a…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分&#xff1a; 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...