当前位置: 首页 > news >正文

复杂网络(四)

一、规则网络

  1. 孤立节点网络
  2. 全局耦合网络(又称完全网络)
  3. 星型网络
  4. 一维环
  5. 二维晶格

编程实践:

import networkx as nx
import matplotlib.pyplot as pltn = 10
#创建孤立节点图
G1 = nx.Graph()
G1.add_nodes_from(list(range(n)))
plt.figure(figsize = (4,4))
nx.draw(G1, pos = nx.circular_layout(G1),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#创建完全图
G2 = nx.complete_graph(n)
plt.figure(figsize = (4,4))
nx.draw(G2, pos = nx.circular_layout(G2),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#创建一维环状图
G3 = nx.cycle_graph(n)
plt.figure(figsize = (4,4))
nx.draw(G3,pos = nx.circular_layout(G3),node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#创建K近邻(耦合)图
G4 = nx.watts_strogatz_graph(n,4,0)
plt.figure(figsize = (4,4))
nx.draw(G4, pos = nx.circular_layout(G4),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#二维方格图
G5 = nx.grid_graph((6,6),periodic=False)
plt.figure(figsize = (4,4))
nx.draw(G5, with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()

二、ER随机网络的生成算法

(1)G(N,L)模型:N个节点通过L条随机放置的链接彼此相连

(2)G(N,p)模型:N个节点中,每对节点之间以概率p彼此相连

G(N,p)步骤如下:

(1)从N个孤立节点开始

(2)选择一对节点,产生一个0到1之间的随机数。如果该随机数小于p,在这对节点之间放置一条链接;否则,该节点对保持不连接。

(3)对所有N(N - 1)/2个节点对,重复步骤。

编程实践:

import random
import itertoolsimport matplotlib.pyplot as plt
import networkx as nxdef GNL(N,L):G = nx.Graph()G.add_nodes_from(range(N))nlist = list(G)edge_count = 0while edge_count < L:u = random.choice(nlist)v = random.choice(nlist)if u == v or G.has_edge(u,v):continueelse:G.add_edge(u,v)edge_count += 1return G
# G = GNL(100,200)def GNP(N,p):edges = itertools.combinations(range(N), 2)G = nx.Graph()G.add_nodes_from(range(N))nlist = list(G)for u,v in itertools.combinations(nlist,2):if random.random() < p:G.add_edge(u,v)return G
# G = GNP(100,0.2)
#可以直接调用库函数来生成这种两种网络
n,m,p = 10,20,0.2
g1 = nx.gnm_random_graph(n,m)
g2 = nx.erdos_renyi_graph(n,p)plt.figure(figsize = (8,4))
nx.draw(g1, pos = nx.circular_layout(g1),with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.title("G(N,L)")
plt.show()nx.draw(g2, pos = nx.circular_layout(g2),with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.title("G(N,p)")
plt.show()

三、ER随机网络结构特征

期望连边数,在连接概率为p的ER随机图中,可知其平均度为 pN

ER随机网络的度分布:规模小服从二项分布,规模大时服从泊松分布

编程实践:

import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy import stats#定义求度分布函数
def get_pdf(G,kmin,kmax):k = list(range(kmin,kmax + 1))N = len(G.nodes())Pk = []for ki in k:c = 0for i in G.nodes():if G.degree(i) == ki:c += 1Pk.append(c/N)return k,Pksamples = 100 #统计平均
N = [100,1000]kmin,kmax,avk = 20,80,50
s1 = np.zeros(kmax - kmin + 1)
s2 = np.zeros(kmax - kmin + 1)
for i in range(samples):ER1 = nx.gnp_random_graph(N[0],avk/N[0])x1,y1 = get_pdf(ER1,kmin,kmax)ER2 = nx.gnp_random_graph(N[1],avk/N[1])x2,y2 = get_pdf(ER2,kmin,kmax)s1 += np.array(y1)s2 += np.array(y2)#计算二项分布理论值
n = 100
p = 0.5
k = np.arange(20,81)
pk_b = stats.binom.pmf(k,n,p)#计算泊松分布理论值
pk_p = [np.exp(-avk)*(avk**ki)/math.factorial(ki) for ki in range(kmin,kmax + 1)]plt.figure(figsize=(6,4))
plt.plot(x1, s1/samples, 'ro', label='$N = 100$')
plt.plot(x2, s2/samples, 'bs', label='$N = 1000$')
plt.plot(x2, pk_b, 'g-', label='binomial')
plt.plot(x2, pk_p, 'r-', label='poisson')
plt.legend(loc=0)
plt.xlabel("$k$")
plt.ylabel("$p_k$")
plt.xlim([20,80])
plt.show()

相关文章:

复杂网络(四)

一、规则网络 孤立节点网络全局耦合网络&#xff08;又称完全网络&#xff09;星型网络一维环二维晶格 编程实践&#xff1a; import networkx as nx import matplotlib.pyplot as pltn 10 #创建孤立节点图 G1 nx.Graph() G1.add_nodes_from(list(range(n))) plt.figure(f…...

用MATLAB符号工具建立机器人的动力学模型

目录 介绍代码功能演示拉格朗日方法回顾求解符号表达式数值求解 介绍 开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型&#xff0c;表示为二阶微分方程组。本文以一个二杆系统为例&#xff0c;介绍如何用MATLAB符号工具得到微分方程表达式&#xff0c;只需要…...

SQL优化与性能——数据库设计优化

数据库设计优化是提高数据库性能、确保数据一致性和支持业务增长的关键环节。无论是大型企业应用还是小型项目&#xff0c;合理的数据库设计都能够显著提升系统性能、减少冗余数据、优化查询响应时间&#xff0c;并降低维护成本。本章将深入探讨数据库设计中的几个关键技术要点…...

FPGA存在的意义:为什么adc连续采样需要fpga来做,而不会直接用iic来实现

FPGA存在的意义&#xff1a;为什么adc连续采样需要fpga来做&#xff0c;而不会直接用iic来实现 原因ADS111x连续采样实现连续采样功能说明iic读取adc的数据速率 VS adc连续采样的速率adc连续采样的速率iic读取adc的数据速率结论分析 FPGA读取adc数据问题一&#xff1a;读取adc数…...

我们来学mysql -- 事务之概念(原理篇)

事务的概念 题记一个例子一致性隔离性原子性持久性 题记 在漫长的编程岁月中&#xff0c;存在一如既往地贯穿着工作&#xff0c;面试的概念这类知识点&#xff0c;事不关己当然高高挂起&#xff0c;精准踩坑时那心情也的却是日了&#x1f436;请原谅我的粗俗&#xff0c;遇到B…...

基于特征子空间的高维异常检测:一种高效且可解释的方法

本文将重点探讨一种替代传统单一检测器的方法&#xff1a;不是采用单一检测器分析数据集的所有特征&#xff0c;而是构建多个专注于特征子集(即子空间)的检测器系统。 在表格数据的异常检测实践中&#xff0c;我们的目标是识别数据中最为异常的记录&#xff0c;这种异常性可以…...

看不见的彼方:交换空间——小菜一碟

有个蓝色的链接&#xff0c;先去看看两年前的题目的write up &#xff08;https://github.com/USTC-Hackergame/hackergame2022-writeups/blob/master/official/%E7%9C%8B%E4%B8%8D%E8%A7%81%E7%9A%84%E5%BD%BC%E6%96%B9/README.md&#xff09; 从别人的write up中了解到&…...

YOLO模型训练后的best.pt和last.pt区别

在选择YOLO模型训练后的权重文件best.pt和last.pt时&#xff0c;主要取决于具体的应用场景‌&#xff1a;‌12 ‌best.pt‌&#xff1a;这个文件保存的是在训练过程中表现最好的模型权重。通常用于推理和部署阶段&#xff0c;因为它包含了在验证集上表现最好的模型权重&#x…...

Pareidoscope - 语言结构关联工具

文章目录 关于 Pareidoscope安装使用方法输入格式语料库查询 将语料库转换为 SQLite3 数据库两种语言结构之间的关联简单词素分析关联共现和伴随词素分析相关的更大结构可视化关联结构 关于 Pareidoscope Pareidoscope 是一组 用于确定任意语言结构之间 关联的工具&#xff0c…...

GPT(Generative Pre-trained Transformer) 和 Transformer的比较

GPT&#xff08;Generative Pre-trained Transformer&#xff09; 和 Transformer 的比较 flyfish 1. Transformer 是一种模型架构 Transformer 是一种通用的神经网络架构&#xff0c;由 Vaswani 等人在论文 “Attention Is All You Need”&#xff08;2017&#xff09;中提…...

软件无线电(SDR)的架构及相关术语

今天简要介绍实现无线电系统调制和解调的主要方法&#xff0c;这在软件定义无线电(SDR)的背景下很重要。 外差和超外差 无线电发射机有两种主要架构——一种是从基带频率直接调制到射频频率&#xff08;称为外差&#xff09;&#xff0c;而第二种超外差是通过两个调制阶段来实…...

Python将Excel文件转换为JSON文件

工作过程中,需要从 Excel 文件中读取数据,然后交给 Python 程序处理数据,中间需要把 Excel 文件读取出来转为 json 格式,再进行下一步数据处理。 这里我们使用pandas库,这是一个强大的数据分析工具,能够方便地读取和处理各种数据格式。需要注意的是还需要引入openpyxl库,…...

排序算法之选择排序篇

思想&#xff1a; 每次从未排序的部分找出最小的元素&#xff0c;将其放到已排序部分的末尾 从数据结构中找到最小值&#xff0c;放到第一位&#xff0c;放到最前面&#xff0c;之后再从剩下的元素中找出第二小的值放到第二位&#xff0c;以此类推。 实现思路&#xff1a; 遍…...

sizeof和strlen区分,(好多例子)

sizeof算字节大小 带\0 strlen算字符串长度 \0之前...

A050-基于spring boot物流管理系统设计与实现

&#x1f64a;作者简介&#xff1a;在校研究生&#xff0c;拥有计算机专业的研究生开发团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339; 赠送计算机毕业设计600…...

[自然语言处理] NLP-RNN及其变体-干货

一、认识RNN模型 1 什么是RNN模型 RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出. 一般单层神经网络结构: RNN单层网络结构: 以时间步对RNN进行展开后的单层…...

Elasticsearch ILM 索引生命周期管理讲解与实战

ES ILM 索引生命周期管理讲解与实战 Elasticsearch ILM索引生命周期管理:深度解析与实战演练1. 引言1.1 背景介绍1.2 研究意义2. ILM核心概念2.1 ILM的四个阶段2.1.1 Hot阶段2.1.2 Warm阶段2.1.3 Cold阶段2.1.4 Delete阶段3. ILM实战指南3.1 定义ILM策略3.1.1 创建ILM策略3.1.…...

重塑视频新语言,让每一帧都焕发新生——Video-Retalking,开启数字人沉浸式交流新纪元!

模型简介 Video-Retalking 模型是一种基于深度学习的视频再谈话技术&#xff0c;它通过分析视频中的音频和图像信息&#xff0c;实现视频角色口型、表情乃至肢体动作的精准控制与合成。这一技术的实现依赖于强大的技术架构和核心算法&#xff0c;特别是生成对抗网络&#xff0…...

联想Lenovo SR650服务器硬件监控指标解读

随着企业IT架构的复杂性和业务需求的增长&#xff0c;服务器的稳定运行变得至关重要。联想Lenovo SR650服务器以其高性能和稳定性&#xff0c;在各类应用场景中发挥着关键作用。为了保障服务器的稳定运行&#xff0c;监控易作为一款专业的IT基础设施监控软件&#xff0c;为联想…...

二十一、QT C++

1.1QT介绍 1.1.1 QT简介 Qt 是一个跨平台的应用程序和用户界面框架&#xff0c;用于开发图形用户界面&#xff08;GUI&#xff09;应用程序以及命令行工具。它最初由挪威的 Trolltech &#xff08;奇趣科技&#xff09;公司开发&#xff0c;现在由 Qt Company 维护&#xff…...

微服务上下线动态感知实现的技术解析

序言 随着微服务架构的广泛应用&#xff0c;服务的动态管理和监控变得尤为重要。在微服务架构中&#xff0c;服务的上下线是一个常见的操作&#xff0c;如何实时感知这些变化&#xff0c;确保系统的稳定性和可靠性&#xff0c;成为了一个关键技术挑战。本文将深入探讨微服务上…...

指针与引用错题汇总

int *p[3]; // 定义一个包含 3 个指向 int 的指针的数组int a 10, b 20, c 30; p[0] &a; // p[0] 指向 a p[1] &b; // p[1] 指向 b p[2] &c; // p[2] 指向 c // 访问指针所指向的值 printf("%d %d %d\n", *p[0], *p[1], *p[2]); // 输出: 10 20 30…...

短视频账号矩阵系统源码--独立saas技术部署

短视频矩阵系统通过多账号在多个平台上发布内容&#xff0c;形成一种网络效应。对于抖音平台而言&#xff0c;技术公司需具备特定接口权限方能进行开发工作。然而&#xff0c;视频发布及企业号评论与回复等功能的接口权限往往难以获取。通过构建抖音账号矩阵&#xff0c;利用多…...

leaflet 介绍

目录 一、leaflet 官网 二、leaflet 在项目中的引用 1、在head中引入 2、在main.js中引入 leaflet目前版本是1.9.4&#xff0c;在leaflet插件库中&#xff0c;很多插件因长时间未更新&#xff0c;适配的是1.7版本的&#xff0c;在选用插件的时候要查看版本适配。 leaflet详…...

总结贴:Servlet过滤器、MVC拦截器

一:Servlet过滤器 1.1解析 Filter 即为过滤&#xff0c;用于请求到达Servlet之前(Request),以及再Servlet方法执行完之后返回客户端进行后处理(HttpServletResponse)。简单说就是对请求进行预处理&#xff0c;对响应进行后处理 在请求到达Servlet之前,可以经过多个Filt…...

鸿蒙开发:自定义一个任意位置弹出的Dialog

前言 鸿蒙开发中&#xff0c;一直有个问题困扰着自己&#xff0c;想必也困扰着大多数开发者&#xff0c;那就是&#xff0c;系统提供的dialog自定义弹窗&#xff0c;无法实现在任意位置进行弹出&#xff0c;仅限于CustomDialog和Component struct的成员变量&#xff0c;这就导致…...

在Windows下编译支持https的wsdl2h

下载源码 在官网下载源码 安装Openssl 下载OpenSSL并安装&#xff0c;安装完成后需要将OpenSSL的路径添加到环境变量中 配置VS 1、打开工程 2、因为前面安装的OpenSLL是64位的&#xff0c;因此需要创建一个X64的配置 打开配置管理器&#xff0c;然后选择新建&#xff0…...

PHP和GD库如何根据像素绘制图形

使用PHP和GD库&#xff0c;你可以根据像素绘制各种图形&#xff0c;比如点、线、矩形、圆形等。GD库是PHP的一个扩展&#xff0c;它提供了一系列用于创建和处理图像的函数。以下是一个简单的示例&#xff0c;展示如何使用GD库根据像素绘制图形。 安装GD库 首先&#xff0c;确…...

webpack(react)基本构建

文章目录 概要整体架构流程技术名词解释技术细节小结 概要 Webpack 是一个现代 JavaScript 应用程序的静态模块打包工具。它的主要功能是将各种资源&#xff08;如 JavaScript、CSS、图片等&#xff09;视为模块&#xff0c;并将它们打包成一个或多个输出文件&#xff0c;以便…...

《Opencv》基础操作<1>

目录 一、Opencv简介 主要特点&#xff1a; 应用领域&#xff1a; 二、基础操作 1、模块导入 2、图片的读取和显示 &#xff08;1&#xff09;、读取 &#xff08;2&#xff09;、显示 3、 图片的保存 4、获取图像的基本属性 5、图像转灰度图 6、图像的截取 7、图…...

企业网站mp4怎么处理/聚名网

1 生命周期&#xff1a;从客户视图看待&#xff0c;Bean实例开始于客户获得其引用时&#xff0c;而终止于客户会话的中介。通常&#xff0c;客户会话&#xff08;Client Session&#xff09;的持续期决定了使用中的会话Bean的存活期。会话Bean仅仅是内存对象&#xff0c;一旦其…...

蒙文网站开发/seo免费培训教程

我们每天都会听到越来越多关于征服IT行业的虚拟助手的消息。几乎每家大公司都在尝试做一些与众不同的事情。Apple的Siri&#xff0c;三星的Bixby&#xff0c;亚马逊的Alexa&#xff0c;微软的Cortana等。您可以通过说“Siri&#xff0c;我想要披萨”来订购披萨&#xff0c;或者…...

做垃圾词影响网站排名吗/中文搜索引擎排名

ecshop表结构说明针对的是 ecshop v2.7.3。表结构说明如下&#xff1a; ecs_account_log&#xff1a;账目变动日志表&#xff0c;记录注册用户充值、支付等记录信息 ecs_ad&#xff1a;广告表&#xff0c;用于管理ecshop的广告&#xff0c;包括站内的和站外的 ecs_ad_custom&am…...

web前端开发需要哪些技术/武汉seo排名优化公司

转载于:https://blog.51cto.com/chiefkey/68533...

用dz做网站怎么设置数据库/贴吧引流推广

代理模式 和 装饰器十分类似, 以如下图解释说明区别。 装饰者在之前介绍装饰模式的时候就说明了它是在被装饰者的功能基础上&#xff0c;附加新的功能&#xff0c;而且被装饰者的接口必定会被调用的情况下才选用装饰模式来解决问题&#xff1b; 而代理者是先判断是否需要执行被…...

的网站建设/在线的crm系统软件

文章目录0、打包配置&#xff08;Artifacts&#xff09;1、tomcat 的使用2、配置注释模板3、配置快捷键模板0、打包配置&#xff08;Artifacts&#xff09; Project -> Structure -> Artifacts 1、tomcat 的使用 1.在下拉列表中&#xff0c;点击Edit Configuration […...