当前位置: 首页 > news >正文

【Qt】QDateTimeEdit控件实现清空(不保留默认时间/最小时间)

一、QDateTimeEdit控件

  QDateTimeEdit 提供了一个用于编辑日期和时间的控件。用户可以通过键盘或使用上下箭头键来增加或减少日期和时间值。日期和时间的显示格式根据设置的格式显示,可以通过 setDisplayFormat() 方法来设置。

二、如何清空

我在使用的时候,发现这个控件不管我怎么设置,在控件里都会有一个时间的值(随机值/默认值/范围最小值),在有的界面里就不太美观。下面是清空的代码:

ui->DateTimeEdit->setSpecialValueText(" ");
ui->DateTimeEdit->setMinimumDate(QDate(2024, 1, 1));
ui->DateTimeEdit->setDate(QDate::fromString("2024-01-01", "yyyy-MM-dd"));

这个代码的直接使用就可以实现控件的清空,第一行代码是给这个控件提供一个特殊值 " ",下面的两行主要是限制控件的时间范围和设置时间,结合第一行使用就可以清空。

tip:如果在使用时发现不能清空,先查看自己的控件的时间设置是不是通过读取某一个值进行设置,这个清空操作只能将控件的样式修改为空白,但是控件中的时间不一定会进行置0(毕竟置0也也没有用,0表示Unix时间戳开始时间,为1970-01-01 08:00:00),所以,当发现这个代码没有办法实现清空时,记得先去查看时间数据处理部分有没有进行操作。

【24-11-29】补充:如果进行清空的时候,发现没有效果,还有可能是有时分秒没有置0,只需要在上面的置0代码前加上下面这一段即可

(这里我也不理解,时分秒没有置0,居然会导致清空没有效果,但是加上以后就可以清空,有兴趣的可以去研究一下)

QDateTime dateTime(QDate::fromString("2024-01-01", "yyyy-MM-dd"));
dateTime.setTime(QTime(0, 0, 0));
ui->DateTimeEdit->setDateTime(dateTime);

相关文章:

【Qt】QDateTimeEdit控件实现清空(不保留默认时间/最小时间)

一、QDateTimeEdit控件 QDateTimeEdit 提供了一个用于编辑日期和时间的控件。用户可以通过键盘或使用上下箭头键来增加或减少日期和时间值。日期和时间的显示格式根据设置的格式显示,可以通过 setDisplayFormat() 方法来设置。 二、如何清空 我在使用的时候&#…...

12、字符串

1、字符串概念 字符串用来存储一组字符,因此需要字符数组来存。 C语言中字符串的表示 C语言里面字符串只能用字符数组来存 字符串要求这个数组的末尾必须至少有一个\0 char ch1[] {a,b,c}; // 不是字符串 char ch2[5] {h,e,l,l,o}; // 不是字符串 char…...

DPDK用户态协议栈-Tcp Posix API 1

和udp一样&#xff0c;我们需要实现和系统调用一样的接口来实现我们的tcp server。先来看看我们之前写的unix_tcp使用了哪些接口&#xff0c;这边我加上两个系统调用&#xff0c;分别是接收数据和发送数据。 #include <stdio.h> #include <arpa/inet.h> #include …...

【人工智能-科普】图神经网络(GNN):与传统神经网络的区别与优势

文章目录 图神经网络(GNN):与传统神经网络的区别与优势什么是图神经网络?图的基本概念GNN的工作原理GNN与传统神经网络的不同1. 数据结构的不同2. 信息传递方式的不同3. 模型的可扩展性4. 局部与全局信息的结合GNN的应用领域总结图神经网络(GNN):与传统神经网络的区别与…...

LabVIEW实现UDP通信

目录 1、UDP通信原理 2、硬件环境部署 3、云端环境部署 4、UDP通信函数 5、程序架构 6、前面板设计 7、程序框图设计 8、测试验证 本专栏以LabVIEW为开发平台,讲解物联网通信组网原理与开发方法,覆盖RS232、TCP、MQTT、蓝牙、Wi-Fi、NB-IoT等协议。 结合实际案例,展示如何利…...

[pdf,epub]228页《分析模式》漫谈合集01-45提供下载

《分析模式》漫谈合集01-45的pdf、epub文件提供下载。已上传至本号的CSDN资源。 如果CSDN资源下载有问题&#xff0c;可到umlchina.com/url/ap.html。 已排版成适合手机阅读&#xff0c;pdf的排版更好一些。 ★UMLChina为什么叒要翻译《分析模式》&#xff1f; ★[缝合故事]…...

Kafka的消费消息是如何传递的?

大家好&#xff0c;我是锋哥。今天分享关于【Kafka的消费消息是如何传递的&#xff1f;】面试题。希望对大家有帮助&#xff1b; Kafka的消费消息是如何传递的&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在Kafka中&#xff0c;消息的消费是通过消费…...

二分查找(Java实现)(1)

二分查找&#xff08;Java实现&#xff09;&#xff08;1&#xff09; leetcode 34.排序数组中查找元素第一个和最后一个位置 题目描述: 给你一个按照非递减顺序排列的整数数组 nums&#xff0c;和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。 如…...

力扣103.二叉树的锯齿形层序遍历

题目描述 题目链接103. 二叉树的锯齿形层序遍历 给你二叉树的根节点 root &#xff0c;返回其节点值的 锯齿形层序遍历 。&#xff08;即先从左往右&#xff0c;再从右往左进行下一层遍历&#xff0c;以此类推&#xff0c;层与层之间交替进行&#xff09;。 示例 1&#xff…...

Search with Orama

1.前言 在不久之前&#xff0c;我把 DevNow 的搜索组件通过 Lunr 进行了重构&#xff0c;从前端角度实现了对文章内容的搜索&#xff0c;但是在使用体验上&#xff0c;感觉不是特别好&#xff0c;大概有如下几个原因&#xff1a; 社区的文章数量比较少&#xff0c;项目的 Com…...

一万台服务器用saltstack还是ansible?

一万台服务器用saltstack还是ansible? 选择使用 SaltStack 还是 Ansible 来管理一万台服务器&#xff0c;取决于几个关键因素&#xff0c;如性能、扩展性、易用性、配置管理需求和团队的熟悉度。以下是两者的对比分析&#xff0c;帮助你做出决策&#xff1a; SaltStack&…...

计算机类大厂实习春招秋招开发算法面试问答练习题

计算机类大厂实习春招秋招开发算法面试问答练习题 下面有十个非常重要且常问,面试者却注意不到的问题,我们一个个来看,一个个来学。 线程创建到删除过程中,底层是怎么实现的 1.线程创建 线程创建是线程生命周期的起点。在操作系统中,线程可以通过多种方式创建,但无论哪…...

【热门主题】000068 筑牢网络安全防线:守护数字世界的坚实堡垒

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 【热…...

RPC与HTTP调用模式的架构差异

RPC&#xff08;Remote Procedure Call&#xff0c;远程过程调用&#xff09;和 HTTP 调用是两种常见的通信模式&#xff0c;它们在架构上有以下一些主要差异&#xff1a; 协议层面 RPC&#xff1a;通常使用自定义的二进制协议&#xff0c;对数据进行高效的序列化和反序列化&am…...

计算机网络之传输层协议UDP

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 计算机网络之传输层协议UDP 收录于专栏【计算机网络】 本专栏旨在分享学习计算机网络的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目…...

Uniapp 微信小程序内打开web网页

技术栈&#xff1a;Uniapp Vue3 简介 实际业务中有时候会需要在本微信小程序内打开web页面&#xff0c;这时候可以封装一个路由页面专门用于此场景。 在路由跳转的时候携带路由参数&#xff0c;拼接上web url&#xff0c;接收页面进行参数接收即可。 实现 webview页面 新…...

阅读方法论

选择固有缺陷,选项是对比出来的...

373. 查找和最小的 K 对数字

参考的这个博客&#xff1a; https://zhuanlan.zhihu.com/p/457239781 然后看这个代码我想到了另外一种方法&#xff0c;就是一步一步往里加元组 ( i , j ) (i,j) (i,j)&#xff0c;看代码就知道了&#xff0c;不过需要做一步去重&#xff0c;去重不能用 i n t [ ] int[] int…...

常用函数的使用错题汇总

目录 new/delete malloc/free1. 语言和类型2. 内存分配3. 内存释放4. 安全性和类型安全5. 其他特性总结 线程停止文件流 new/delete malloc/free malloc/free 和 new/delete 是 C/C 中用于动态内存管理的两种方式&#xff0c;它们有一些重要的区别。以下是这两种方式的比较&…...

uniapp手机端一些坑记录

关于 z-paging-x 组件&#xff0c;在ios上有时候通过弹窗去粗发它reload时会触发闪退&#xff0c;可能是弹框插入进去导致的DOM 元素已经被移除或者不可用&#xff0c;解决办法是加上他自带属性 :showRefresherWhenReload"true" 加上showRefresherWhe…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...