简单好用的折线图绘制!
折线图的概念及作用:
折线图(Line Chart)是一种常见的图表类型,用于展示数据的变化趋势或时间序列数据。它通过一系列的数据点(通常表示为坐标系中的点)与这些点之间的线段相连,直观地展示变量随着时间或其他因素变化的情况。折线图适用于比较多个数据集的变化趋势,尤其是在时间序列数据分析中,常用于反映数据的连续性和波动。

1. 折线图的基本概念
折线图是由坐标系中的一系列数据点和这些点之间的直线段组成。每个数据点的横坐标通常代表某一时间点或顺序,而纵坐标则表示对应的数值(如销量、温度、股票价格等)。通过连接这些点,形成折线图,可以清晰地看到数据的波动趋势和变化规律。
- 横坐标(X轴):通常表示自变量,例如时间、日期、阶段等。它是连续的或离散的。
- 纵坐标(Y轴):表示因变量,即需要观察的数据值。
- 数据点:每一个数据点对应一个横坐标和纵坐标的组合,表示某个时刻或某个条件下的观测值。
- 折线:通过连接数据点,形成的线条展示了数据的变化趋势。
2. 折线图的作用
折线图的作用主要体现在以下几个方面:
a. 展示数据变化的趋势
折线图最常见的用途是展示数据随时间或其他因素变化的趋势。通过观察折线的走势,可以直观地了解数据随时间的波动和变化模式。
- 例如,绘制一年中每个月的气温变化折线图,可以清晰地看出气温的升降趋势,揭示季节性变化。
b. 比较多个数据系列
折线图还可以用来比较多个数据系列的变化趋势。当有多个变量或不同类别的时间序列数据时,可以将它们绘制在同一张图表上,通过不同的颜色、线型或符号区分不同的数据系列。
- 例如,比较不同公司在同一时间段内的股票价格变化,或不同地区的气温变化。
c. 揭示数据的波动性和周期性
折线图不仅能展示数据的趋势,还能揭示数据中的周期性波动(如季节变化)、突发性变化、趋势反转等重要特征。
- 例如,通过绘制股票市场的折线图,可以看到市场的波动性,识别牛市和熊市的周期性变化。
d. 识别异常值或趋势变化点
折线图能够帮助观察数据中的异常值或突变点。例如,突如其来的数据激增或暴跌在折线图中会形成尖锐的波动,容易被观察者识别出来。
- 例如,销售额的急剧下降可能是某个重要事件导致的,需要进一步分析。
3. 折线图的类型
根据数据的特点和需求,折线图可以有不同的变种,常见的有:
a. 基本折线图(Simple Line Chart)
最基本的折线图,展示一个数据系列随时间的变化趋势。
b. 多重折线图(Multiple Line Chart)
适用于比较多个数据系列。每个系列通过不同的颜色或线型区分,以便在同一图表中显示多个变量的变化趋势。
c. 堆叠折线图(Stacked Line Chart)
在多重折线图的基础上,堆叠折线图显示了不同数据系列之间的叠加关系。每个数据系列的值在前一系列之上堆叠起来,适用于表示部分与整体的关系。
- 例如,展示各个产品在某个月的销售额时,可以通过堆叠折线图看到不同产品的销售额与总销售额之间的关系。
d. 平滑折线图(Smooth Line Chart)
在基本折线图的基础上,通过平滑算法(如样条插值等)使得折线不那么尖锐,适用于数据变化较为平稳、且不要求每个数据点之间的波动都十分显著的情况。
代码:
第一部分:加载所需包
library(ggplot2)
library(dplyr)
library(tidyr)
library(gridExtra)
library(openxlsx)
ggplot2:用于数据可视化。dplyr:用于数据操作。tidyr:用于数据整理(例如宽表和长表的转换)。gridExtra:用于排版多个图表。openxlsx:用于读取和写入 Excel 文件。
第二部分:数据加载与清理
mydata <- read.xlsx("gpt.xlsx")
mydata <- subset(mydata, mydata$final != 3)
mydata <- mydata %>%mutate(gpt = factor(gpt, levels = c("gpt3.5", "gpt4")),system = factor(system, levels = c("system2", "system1")),query = factor(query, levels = c("query1", "query2")),final_new = factor(final, labels = c("不参加", "参加")),sort_new = factor(sort, labels = paste0(seq(10, 90, by = 10), "%")))
-
数据加载:
read.xlsx("gpt.xlsx"):读取 Excel 文件gpt.xlsx。
-
数据过滤:
subset(mydata, mydata$final != 3):去除final列中值为 3 的数据。
-
数据清理:
- 使用
mutate对数据进行格式化处理:- 将
gpt、system和query列转为因子变量,设定排序规则。 - 对
final和sort列创建新的因子变量,并赋予更易读的标签。
- 将
- 使用
第三部分:分组并汇总数据
result_wide <- mydata %>%group_by(gpt, system, query, final_new) %>%summarise(Frequency = n(), .groups = 'drop') %>%pivot_wider(names_from = final_new, values_from = Frequency, values_fill = list(Frequency = 0)) %>%mutate(Proportion = 参加 / (不参加 + 参加))
-
分组与汇总:
group_by(gpt, system, query, final_new):按gpt、system、query和final_new进行分组。summarise(Frequency = n(), .groups = 'drop'):计算每组的频数,生成Frequency列。
-
宽表转换:
pivot_wider(names_from = final_new, values_from = Frequency, values_fill = list(Frequency = 0)):- 将
final_new的值("不参加" 和 "参加")作为新列,值来源于Frequency。 - 未匹配的单元格填充为
0。
- 将
-
计算比例:
mutate(Proportion = 参加 / (不参加 + 参加)):计算 "参加" 在总频数中的比例,结果存储在Proportion列中。
第四部分:绘制折线图
plota <- ggplot(result_wide, aes(x = system, y = Proportion, color = gpt, linetype = query, group = interaction(gpt, query))) +geom_line(linewidth = 1.1) +geom_point(size = 2) +labs(title = "比对折线图", x = "system", y = "参加比例") +theme_minimal() +theme(plot.title = element_text(hjust = 0.5),legend.title = element_blank(),legend.position = "bottom") +scale_color_manual(values = c("gpt3.5" = "red", "gpt4" = "green")) +scale_linetype_manual(values = c("query1" = "solid", "query2" = "dashed", "query4" = "dotted"),labels = c("query1" = "query1-单次博弈", "query2" = "query2-多次博弈", "query4" = "query4-聚合结果的多次博弈")) +scale_x_discrete(labels = c("system1" = "system1【AI】", "system2" = "system2【Human】"))
核心部分解释:
-
ggplot初始化:aes(x = system, y = Proportion, color = gpt, linetype = query, group = interaction(gpt, query)):- x:
system作为 x 轴变量。 - y:
Proportion作为 y 轴变量(参加比例)。 - color:
gpt区分颜色。 - linetype:
query区分线型(例如虚线、实线等)。 - group:按照
gpt和query的组合分组,确保线条连续。
- x:
-
绘制折线和点:
geom_line(linewidth = 1.1):绘制折线,设置线宽为 1.1。geom_point(size = 2):在线上叠加点,设置点大小为 2。
-
添加标题和标签:
labs(title = "比对折线图", x = "system", y = "参加比例"):设置图表标题和轴标签。
-
主题样式:
theme_minimal():应用简约主题。theme(...):plot.title = element_text(hjust = 0.5):标题居中。legend.title = element_blank():去除图例标题。legend.position = "bottom":将图例放在底部。
-
自定义颜色和线型:
scale_color_manual(...):指定颜色:"gpt3.5"为红色,"gpt4"为绿色。
scale_linetype_manual(...):values:指定线型(实线、虚线、点线)。labels:为每种query提供易读的标签描述。
-
自定义 x 轴标签:
scale_x_discrete(labels = c("system1" = "system1【AI】", "system2" = "system2【Human】")):- 将
system1和system2的标签分别替换为system1【AI】和system2【Human】。
- 将
第五部分:保存图表
ggsave("plota.png", plota, width = 8, height = 6, bg = "white")
- 将绘制的图形
plota保存为 PNG 文件:- 文件名为
plota.png。 - 宽度和高度分别为 8 英寸和 6 英寸。
- 背景色为白色。
- 文件名为
总结:
# ------- 加载所需包 -------
library(ggplot2)
library(dplyr)
library(tidyr)
library(gridExtra)
library(openxlsx)# ------- 加载并清理数据 -------
mydata <- read.xlsx("gpt.xlsx")
mydata <- subset(mydata, mydata$final != 3)
mydata <- mydata %>%mutate(gpt = factor(gpt, levels = c("gpt3.5", "gpt4")),system = factor(system, levels = c("system2", "system1")),query = factor(query, levels = c("query1", "query2")),final_new = factor(final, labels = c("不参加", "参加")),sort_new = factor(sort, labels = paste0(seq(10, 90, by = 10), "%")))# ------- 分组并汇总数据 -------
result_wide <- mydata %>%group_by(gpt, system, query, final_new) %>%summarise(Frequency = n(), .groups = 'drop') %>%pivot_wider(names_from = final_new, values_from = Frequency, values_fill = list(Frequency = 0)) %>%mutate(Proportion = 参加 / (不参加 + 参加))# 打印汇总数据
print(result_wide)# ------- 绘制折线图 -------
plota <- ggplot(result_wide, aes(x = system, y = Proportion, color = gpt, linetype = query, group = interaction(gpt, query))) +geom_line(linewidth = 1.1) +geom_point(size = 2) +labs(title = "比对折线图", x = "system", y = "参加比例") +theme_minimal() +theme(plot.title = element_text(hjust = 0.5),legend.title = element_blank(),legend.position = "bottom") +scale_color_manual(values = c("gpt3.5" = "red", "gpt4" = "green")) +scale_linetype_manual(values = c("query1" = "solid", "query2" = "dashed", "query4" = "dotted"),labels = c("query1" = "query1-单次博弈", "query2" = "query2-多次博弈", "query4" = "query4-聚合结果的多次博弈")) +scale_x_discrete(labels = c("system1" = "system1【AI】", "system2" = "system2【Human】"))# 显示图表
print(plota)# ------- 保存图表 -------
ggsave("plota.png", plota, width = 8, height = 6, bg = "white")
相关文章:
简单好用的折线图绘制!
折线图的概念及作用: 折线图(Line Chart)是一种常见的图表类型,用于展示数据的变化趋势或时间序列数据。它通过一系列的数据点(通常表示为坐标系中的点)与这些点之间的线段相连,直观地展示变量…...
Hadoop批量计算实验
参考: Hadoop(一)之实验一CentOS7配置Hadoop系统:配置CentOS和下载安装包_基于虚拟机cents7搭建hadoop实验目的-CSDN博客 --------------------------------------------------------- 一、安装Vmware 二、创建虚拟机 1.安装centos7 ①打开VMware,点击新建虚拟机。 …...
基于rpcapd与wireshark的远程实时抓包的方法
基于rpcapd与wireshark的远程实时抓包的方法 服务端安装wireshark侧设置 嵌入式设备或服务器上没有图形界面,通常使用tcpdump抓包保存为pcap文件后,导出到本地使用wireshark打开分析,rpcapd可与wireshark配合提供一种远程实时抓包的方案&…...
ubuntu多版本安装gcc
1.ubuntu安装gcc 9.3.1 $ sudo apt update $ sudo apt install gcc-9 g-9 二、配置GCC版本 安装完成后,需要使用update-alternatives命令来配置GCC版本。这个命令允许系统在多个安装的版本之间进行选择 1.添加GCC 9.3.1到update-alternatives管理 $ sudo update-a…...
算法刷题Day1
BM47 寻找第k大 第一天就随便记录吧,万事开头难,我好不容易开的头,就别难为自己,去追求高质量了。嘿嘿嘿 题目 传送门 解题思路一:维护一个大小为k的最小堆。最后返回堆顶元素。 代码: # # 代码中的类名…...
泛化调用 :在没有接口的情况下进行RPC调用
什么是泛化调用? 在RPC调用的过程中,调用端向服务端发起请求,首先要通过动态代理,动态代理可以屏蔽RPC处理流程,使得发起远程调用就像调用本地一样。 RPC调用本质:调用端向服务端发送一条请求消息&#x…...
Java 泛型详细解析
泛型的定义 泛型类的定义 下面定义了一个泛型类 Pair,它有一个泛型参数 T。 public class Pair<T> {private T start;private T end; }实际使用的时候就可以给这个 T 指定任何实际的类型,比如下面所示,就指定了实际类型为 LocalDate…...
题解:CF332B Maximum Absurdity
CF332B CF332B 暴力思路 题目要我们找两个不重叠的区间,并使区间的值最大。那我们可以考虑使用双重循环搭配前缀和暴力求最大值。代码如下。 for(int i1;i<n;i) {ll lsum[ik-1]-sum[i-1],maxx;for(int jik;j<n;j){maxxlsum[jk-1]-sum[j-1];if(maxx>ans.…...
Vue 集成和使用 SQLite 的完整指东
1. 引言 SQLite 是一种轻量级的关系型数据库管理系统,以其简单易用、无需服务器等特点广泛应用于嵌入式系统、移动应用和小型应用程序中。在 Web 开发中,尤其是前端应用开发中,SQLite 可以作为客户端本地存储的一种选择,为用户提…...
【JVM什么时候触发YoungGC和FullGC】
YoungGC 年轻代Eden区满,就会触发YoungGC FullGC 老年代空间不足 经过多次GC后的大年龄对象会被放进老年代,或创建的大对象会直接在老年代分配,此时若老年代空间不足,就会触发FullGC。空间分配担保失败 触发YoungGC的时候会进行…...
ubuntu配置网络
1,设置桥接模式 1-1: 确定。 1-2: 编辑--->虚拟网络编辑器 刚安装ubuntu的时候,可能没有任何VMnet. 更改设置的目的: 添加VMnet0,并且设置VMnet为桥接模式--自动桥接。 如果没有VMnet0,选择添加网络…...
第十一课 Unity编辑器创建的资源优化_预制体和材质篇(Prefabs和Materials)详解
预制体(Prefabs) Unity中的预制体是用来存储游戏对象、子对象及其所需组件的可重用资源,一般来说预制体资源可充当资源模版,在此模版基础上可以在场景中创建新的预制体实例。 使用预制体的好处 由于预制体系统可以自动保持所有实例副本同步,…...
2024.11.29(单链表)
思维导图 声明文件 #ifndef __LINKLIST_H__ #define __LINKLIST_H__#include <myhead.h>typedef char datatype; //数据元素类型 //定义节点类型 typedef struct Node {union{int len; //头节点数据域datatype data; //普通节点数据域};struct Node *next; //指针域…...
基于深度学习和卷积神经网络的乳腺癌影像自动化诊断系统(PyQt5界面+数据集+训练代码)
乳腺癌是全球女性中最常见的恶性肿瘤之一,早期准确诊断对于提高生存率具有至关重要的意义。传统的乳腺癌诊断方法依赖于放射科医生的经验,然而,由于影像分析的复杂性和人类判断的局限性,准确率和一致性仍存在挑战。近年来…...
opengl 三角形
最后效果: OpenGL version: 4.1 Metal 不知道为啥必须使用VAO 才行。 #include <glad/glad.h> #include <GLFW/glfw3.h>#include <iostream> #include <vector>void framebuffer_size_callback(GLFWwindow *window, int width, int heigh…...
23种设计模式-抽象工厂(Abstract Factory)设计模式
文章目录 一.什么是抽象工厂设计模式?二.抽象工厂模式的特点三.抽象工厂模式的结构四.抽象工厂模式的优缺点五.抽象工厂模式的 C 实现六.抽象工厂模式的 Java 实现七.代码解析八.总结 类图: 抽象工厂设计模式类图 一.什么是抽象工厂设计模式?…...
手机上怎么拍证件照,操作简单且尺寸颜色标准的方法
在数字化时代,手机已成为我们日常生活中不可或缺的一部分。它不仅是通讯工具,更是我们拍摄证件照的便捷利器。然而,目前证件照制作工具鱼龙混杂,很多打着免费名号的拍照软件背后却存在着泄漏用户信息、照片制作不规范导致无法使用…...
IDEA报错: java: JPS incremental annotation processing is disabled 解决
起因 换了个电脑打开了之前某个老项目IDEA启动springcloud其中某个服务直接报错,信息如下 java: JPS incremental annotation processing is disabled. Compilation results on partial recompilation may be inaccurate. Use build process “jps.track.ap.depen…...
OCR实现微信截图改名
pip install paddlepaddle -i https://pypi.tuna.tsinghua.edu.cn/simple/ ──(Sat,Nov30)─┘ pip install shapely -i https://pypi.tuna.tsinghua.edu.cn/simple/ pip install paddleo…...
第一届“吾杯”网络安全技能大赛 Writeup
战队信息 战队名称:在你眼中我是誰,你想我代替誰? 战队排名:13 Misc Sign Hex 转 Str,即可得到flag。 原神启动! 不好评价,stegsolve 秒了: WuCup{7c16e21c-31c2-439e-a814-b…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
