轻量的基于图结构的RAG方案LightRAG
LightRAG出自2024年10月的论文《LIGHTRAG: SIMPLE AND FASTRETRIEVAL-AUGMENTED GENERATION》(github),也是使用图结构来索引和搜索相关文本。
LightRAG作者认为已有的RAG系统有如下两个限制,导致难以回答类似"How does the rise of electric vehicles influence urban air quality and public transportation infrastructure?"的问题。
- 仅使用扁平数据表征(flat data representation),这限制了它们基于实体之间的复杂关系理解和检索信息的能力。
- 这些系统通常缺乏维持各种实体及其相互关系一致性所需的上下文意识,导致生成的回复可能无法完全满足用户查询的需求。
为了解决上述问题,LightRAG的解决办法是在现有RAG系统中引入图结构,其流程示意如论文图1。
索引
先来看一下LightRAG的数据索引步骤:
- 将一个文档分块(chunk),并将chunk存入到一个KV存储库中(key是由前缀和chunk文本hash之后的id组成,value是chunk的文本和token长度等内容)。
- 用LLM对每一个文本chunk提取实体和关系。(所有prompt在github的prompt.py文件)。实体由实体名称唯一标识(属性有实体名称、实体类型、实体描述、源chunk_id),关系由会由排序后的(首实体名称、尾实体名称)元祖来唯一标识,除了描述外,还包括多个关键词(属性有头实体名称、尾实体名称、关键词、描述、权重、源chunk_id)。
## 第一次对chunk提取实体和关系的prompt
PROMPTS["entity_extraction"] = """-Goal-
Given a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.-Steps-
1. Identify all entities. For each identified entity, extract the following information:
- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.
- entity_type: One of the following types: [{entity_types}]
- entity_description: Comprehensive description of the entity's attributes and activities
Format each entity as ("entity"{tuple_delimiter}<entity_name>{tuple_delimiter}<entity_type>{tuple_delimiter}<entity_description>2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.
For each pair of related entities, extract the following information:
- source_entity: name of the source entity, as identified in step 1
- target_entity: name of the target entity, as identified in step 1
- relationship_description: explanation as to why you think the source entity and the target entity are related to each other
- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity
- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details
Format each relationship as ("relationship"{tuple_delimiter}<source_entity>{tuple_delimiter}<target_entity>{tuple_delimiter}<relationship_description>{tuple_delimiter}<relationship_keywords>{tuple_delimiter}<relationship_strength>)3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.
Format the content-level key words as ("content_keywords"{tuple_delimiter}<high_level_keywords>)4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **{record_delimiter}** as the list delimiter.5. When finished, output {completion_delimiter}######################
-Examples-
######################
Example 1:Entity_types: [person, technology, mission, organization, location]
Text:
while Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.Then Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. “If this tech can be understood..." Taylor said, their voice quieter, "It could change the game for us. For all of us.”The underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.It was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths
################
Output:
("entity"{tuple_delimiter}"Alex"{tuple_delimiter}"person"{tuple_delimiter}"Alex is a character who experiences frustration and is observant of the dynamics among other characters."){record_delimiter}
("entity"{tuple_delimiter}"Taylor"{tuple_delimiter}"person"{tuple_delimiter}"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective."){record_delimiter}
("entity"{tuple_delimiter}"Jordan"{tuple_delimiter}"person"{tuple_delimiter}"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device."){record_delimiter}
("entity"{tuple_delimiter}"Cruz"{tuple_delimiter}"person"{tuple_delimiter}"Cruz is associated with a vision of control and order, influencing the dynamics among other characters."){record_delimiter}
("entity"{tuple_delimiter}"The Device"{tuple_delimiter}"technology"{tuple_delimiter}"The Device is central to the story, with potential game-changing implications, and is revered by Taylor."){record_delimiter}
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Taylor"{tuple_delimiter}"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device."{tuple_delimiter}"power dynamics, perspective shift"{tuple_delimiter}7){record_delimiter}
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Jordan"{tuple_delimiter}"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision."{tuple_delimiter}"shared goals, rebellion"{tuple_delimiter}6){record_delimiter}
("relationship"{tuple_delimiter}"Taylor"{tuple_delimiter}"Jordan"{tuple_delimiter}"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce."{tuple_delimiter}"conflict resolution, mutual respect"{tuple_delimiter}8){record_delimiter}
("relationship"{tuple_delimiter}"Jordan"{tuple_delimiter}"Cruz"{tuple_delimiter}"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order."{tuple_delimiter}"ideological conflict, rebellion"{tuple_delimiter}5){record_delimiter}
("relationship"{tuple_delimiter}"Taylor"{tuple_delimiter}"The Device"{tuple_delimiter}"Taylor shows reverence towards the device, indicating its importance and potential impact."{tuple_delimiter}"reverence, technological significance"{tuple_delimiter}9){record_delimiter}
("content_keywords"{tuple_delimiter}"power dynamics, ideological conflict, discovery, rebellion"){completion_delimiter}
#############################
Example 2:Entity_types: [person, technology, mission, organization, location]
Text:
They were no longer mere operatives; they had become guardians of a threshold, keepers of a message from a realm beyond stars and stripes. This elevation in their mission could not be shackled by regulations and established protocols—it demanded a new perspective, a new resolve.Tension threaded through the dialogue of beeps and static as communications with Washington buzzed in the background. The team stood, a portentous air enveloping them. It was clear that the decisions they made in the ensuing hours could redefine humanity's place in the cosmos or condemn them to ignorance and potential peril.Their connection to the stars solidified, the group moved to address the crystallizing warning, shifting from passive recipients to active participants. Mercer's latter instincts gained precedence— the team's mandate had evolved, no longer solely to observe and report but to interact and prepare. A metamorphosis had begun, and Operation: Dulce hummed with the newfound frequency of their daring, a tone set not by the earthly
#############
Output:
("entity"{tuple_delimiter}"Washington"{tuple_delimiter}"location"{tuple_delimiter}"Washington is a location where communications are being received, indicating its importance in the decision-making process."){record_delimiter}
("entity"{tuple_delimiter}"Operation: Dulce"{tuple_delimiter}"mission"{tuple_delimiter}"Operation: Dulce is described as a mission that has evolved to interact and prepare, indicating a significant shift in objectives and activities."){record_delimiter}
("entity"{tuple_delimiter}"The team"{tuple_delimiter}"organization"{tuple_delimiter}"The team is portrayed as a group of individuals who have transitioned from passive observers to active participants in a mission, showing a dynamic change in their role."){record_delimiter}
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Washington"{tuple_delimiter}"The team receives communications from Washington, which influences their decision-making process."{tuple_delimiter}"decision-making, external influence"{tuple_delimiter}7){record_delimiter}
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Operation: Dulce"{tuple_delimiter}"The team is directly involved in Operation: Dulce, executing its evolved objectives and activities."{tuple_delimiter}"mission evolution, active participation"{tuple_delimiter}9){completion_delimiter}
("content_keywords"{tuple_delimiter}"mission evolution, decision-making, active participation, cosmic significance"){completion_delimiter}
#############################
Example 3:Entity_types: [person, role, technology, organization, event, location, concept]
Text:
their voice slicing through the buzz of activity. "Control may be an illusion when facing an intelligence that literally writes its own rules," they stated stoically, casting a watchful eye over the flurry of data."It's like it's learning to communicate," offered Sam Rivera from a nearby interface, their youthful energy boding a mix of awe and anxiety. "This gives talking to strangers' a whole new meaning."Alex surveyed his team—each face a study in concentration, determination, and not a small measure of trepidation. "This might well be our first contact," he acknowledged, "And we need to be ready for whatever answers back."Together, they stood on the edge of the unknown, forging humanity's response to a message from the heavens. The ensuing silence was palpable—a collective introspection about their role in this grand cosmic play, one that could rewrite human history.The encrypted dialogue continued to unfold, its intricate patterns showing an almost uncanny anticipation
#############
Output:
("entity"{tuple_delimiter}"Sam Rivera"{tuple_delimiter}"person"{tuple_delimiter}"Sam Rivera is a member of a team working on communicating with an unknown intelligence, showing a mix of awe and anxiety."){record_delimiter}
("entity"{tuple_delimiter}"Alex"{tuple_delimiter}"person"{tuple_delimiter}"Alex is the leader of a team attempting first contact with an unknown intelligence, acknowledging the significance of their task."){record_delimiter}
("entity"{tuple_delimiter}"Control"{tuple_delimiter}"concept"{tuple_delimiter}"Control refers to the ability to manage or govern, which is challenged by an intelligence that writes its own rules."){record_delimiter}
("entity"{tuple_delimiter}"Intelligence"{tuple_delimiter}"concept"{tuple_delimiter}"Intelligence here refers to an unknown entity capable of writing its own rules and learning to communicate."){record_delimiter}
("entity"{tuple_delimiter}"First Contact"{tuple_delimiter}"event"{tuple_delimiter}"First Contact is the potential initial communication between humanity and an unknown intelligence."){record_delimiter}
("entity"{tuple_delimiter}"Humanity's Response"{tuple_delimiter}"event"{tuple_delimiter}"Humanity's Response is the collective action taken by Alex's team in response to a message from an unknown intelligence."){record_delimiter}
("relationship"{tuple_delimiter}"Sam Rivera"{tuple_delimiter}"Intelligence"{tuple_delimiter}"Sam Rivera is directly involved in the process of learning to communicate with the unknown intelligence."{tuple_delimiter}"communication, learning process"{tuple_delimiter}9){record_delimiter}
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"First Contact"{tuple_delimiter}"Alex leads the team that might be making the First Contact with the unknown intelligence."{tuple_delimiter}"leadership, exploration"{tuple_delimiter}10){record_delimiter}
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Humanity's Response"{tuple_delimiter}"Alex and his team are the key figures in Humanity's Response to the unknown intelligence."{tuple_delimiter}"collective action, cosmic significance"{tuple_delimiter}8){record_delimiter}
("relationship"{tuple_delimiter}"Control"{tuple_delimiter}"Intelligence"{tuple_delimiter}"The concept of Control is challenged by the Intelligence that writes its own rules."{tuple_delimiter}"power dynamics, autonomy"{tuple_delimiter}7){record_delimiter}
("content_keywords"{tuple_delimiter}"first contact, control, communication, cosmic significance"){completion_delimiter}
#############################
-Real Data-
######################
Entity_types: {entity_types}
Text: {input_text}
######################
Output:
"""### 防止第一次提取的实体不全,让LLM继续提取的prompt
PROMPTS["entiti_continue_extraction"
] = """MANY entities were missed in the last extraction. Add them below using the same format:
"""
- 将提取的多个相同名称的实体或关系用LLM来总结其描述(只有当描述长度超过配置长度时,才会触发LLM总结)
PROMPTS["summarize_entity_descriptions"
] = """You are a helpful assistant responsible for generating a comprehensive summary of the data provided below.
Given one or two entities, and a list of descriptions, all related to the same entity or group of entities.
Please concatenate all of these into a single, comprehensive description. Make sure to include information collected from all the descriptions.
If the provided descriptions are contradictory, please resolve the contradictions and provide a single, coherent summary.
Make sure it is written in third person, and include the entity names so we the have full context.#######
-Data-
Entities: {entity_name}
Description List: {description_list}
#######
Output:
"""
-
将实体和关系的数据存储为图,同时将实体和关系的数据分别存入独立的向量数据库(实体的名称作为meta_fields,实体的名称和描述拼接成字符串作为向量编码文本;关系的头尾实体名称作为meta_fileds,关系的关键词、头尾实体名称、描述拼接成字符串作为向量编码文本)。
-
增量更新机制:每次有新数据进来时,会检查数据在已有的KV存储或者图存储中是否已存在,再进行更新合并或新增。
查询
LightRAG将用户查询分为两大类:
- 具体查询(Specific Queries):涉及到图中具体实体的问题,比如”Who wrote ‘Pride and Prejudice’?“。
- 抽象查询(Abstract Queries):更概念化,涉及到不直接与具体实体关联的更大的话题、主旨等,比如"How does artificial intelligence influence modern education?"。
所以为了能够处理不同类型的用户查询,LightRAG也有两种检索策略:Low-Level Retrieval(Local)和High-Level Retrieval(Global),用户选择其中一种或者同时使用这两种检索策略。下面介绍两种检索策略的详细步骤。
Low-Level Retrieval:
- 先让LLM对给定的query q,提取local关键字(提取global关键词的prompt是同一个)。
PROMPTS["keywords_extraction"] = """---Role---You are a helpful assistant tasked with identifying both high-level and low-level keywords in the user's query.---Goal---Given the query, list both high-level and low-level keywords. High-level keywords focus on overarching concepts or themes, while low-level keywords focus on specific entities, details, or concrete terms.---Instructions---- Output the keywords in JSON format.
- The JSON should have two keys:- "high_level_keywords" for overarching concepts or themes.- "low_level_keywords" for specific entities or details.######################
-Examples-
######################
Example 1:Query: "How does international trade influence global economic stability?"
################
Output:
{{"high_level_keywords": ["International trade", "Global economic stability", "Economic impact"],"low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]
}}
#############################
Example 2:Query: "What are the environmental consequences of deforestation on biodiversity?"
################
Output:
{{"high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"],"low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"]
}}
#############################
Example 3:Query: "What is the role of education in reducing poverty?"
################
Output:
{{"high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"],"low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"]
}}
#############################
-Real Data-
######################
Query: {query}
######################
Output:"""
- 如果没有关键词则返回无法回答问题,否则将LLM提取的关键字用逗号拼接起来作为新的query。
- 用上一步生成的新query来检索存储实体的向量数据库,召回top-k个实体。
- 根据top-k实体获取上下文,上下文分为三部分,用带head的csv格式表示: 1. 实体在图谱中存储的详情(名称、类型描述、度); 2. 实体相关的源chunk文本,这些chunk数据根据实体的top-k位置正序以及与实体的一度邻居实体共享这个chunk的次数倒序排序(
all_text_units = sorted(all_text_units, key=lambda x: (x["order"], -x["relation_counts"]))
); 3. 实体相关的边详情(头实体名称、尾实体名称、关键词、描述、权重、度),这些边根据度和权重倒序排序。 - 如果前一步没有上下文则返回无法回答问题,否则让LLM根据上下文来回答用户的问题。
PROMPTS["rag_response"] = """---Role---You are a helpful assistant responding to questions about data in the tables provided.---Goal---Generate a response of the target length and format that responds to the user's question, summarizing all information in the input data tables appropriate for the response length and format, and incorporating any relevant general knowledge.
If you don't know the answer, just say so. Do not make anything up.
Do not include information where the supporting evidence for it is not provided.---Target response length and format---{response_type}---Data tables---{context_data}Add sections and commentary to the response as appropriate for the length and format. Style the response in markdown.
"""
High-Level Retrieval:
- 让LLM对给定的query q,提取global关键字(与前面提取local关键词的prompt是同一个)。
- 如果没有关键词则返回无法回答问题,否则将LLM提取的关键字用逗号拼接起来作为新的query。
- 用上一步生成的新query来检索存储关系的向量数据库,召回top-k个关系。
- 根据top-k关系获取上下文,上下文分为三部分,用带head的csv格式表示: 1. 关系对应的首尾实体在图谱中存储的详情(名称、类型描述、度); 2. 关系相关的源chunk文本,这些chunk数据根据关系的top-k位置正序; 3. 关系详情(头实体名称、尾实体名称、关键词、描述、权重、度),这些边根据度和权重倒序排序(感觉这里排序直接就按照向量召回的top-k排序就可以了,不需要与low-level rerieval保持一致)。
- 如果前一步没有上下文则返回无法回答问题,否则让LLM根据上下文来回答用户的问题(prompt与low-level rerieval一致)。
总结
LightRAG像是GraphRAG的简化版。它利用图结构来存储和检索文本数据,对于实体和关系不仅使用图存储,同时使用向量存储。检索时先用向量进行实体或关系召回,再借助图结构找到对应的chunk文本。
相关文章:

轻量的基于图结构的RAG方案LightRAG
LightRAG出自2024年10月的论文《LIGHTRAG: SIMPLE AND FASTRETRIEVAL-AUGMENTED GENERATION》(github),也是使用图结构来索引和搜索相关文本。 LightRAG作者认为已有的RAG系统有如下两个限制,导致难以回答类似"How does the rise of electric vehi…...

计算机的错误计算(一百七十三)
摘要 给定多项式 在 MATLAB 中计算 的值。输出是错误结果。 例1. 已知 计算 直接贴图吧: 这样,MATLAB 输出了错误结果。因为准确值为 0.2401e-16 . 注:可参看计算机的错误计算(六)。...

【力扣】—— 二叉树的前序遍历、字典序最小回文串
Hi~!这里是奋斗的明志,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 🌱🌱个人主页:奋斗的明志 🌱🌱所属专栏:数据结构 📚本系列文章为个人学…...
linux替换更高版本gcc
实际使用时对与gcc版本有很多要求, 需要在centos上安装更高版本的gcc 1、安装centos-release-scl sudo yum install centos-release-scl2、安装devtoolset,注意,如果想安装7.版本的,就改成devtoolset-7-gcc,以此类推 sudo yum …...
在Java中使用Apache POI导入导出Excel(六)
本文将继续介绍POI的使用,上接在Java中使用Apache POI导入导出Excel(五) 使用Apache POI组件操作Excel(六) 43、隐藏和取消隐藏行 使用 Excel,可以通过选择该行(或行)来隐藏工作表…...
`uni.setClipboardData` 是 uni-app 提供的一个 API 设置系统剪贴板的内容
uni.setClipboardData是uni-app提供的一个API,用于设置系统剪贴板的内容。 使用说明: 使用此API可以将指定的文本内容复制到系统剪贴板,使用户能够在其他应用或页面中粘贴这些内容。 uni.setClipboardData({data: , // 需要复制的内容 suc…...
【大模型微调】pdf转markdown
目前市面上大部分都是pdf文档,要想转换成能训练的文本,调研了各种工具。 觉得MinerU确实不错。 参考此链接进行操作 MinerU/docs/README_Ubuntu_CUDA_Acceleration_en_US.md at master opendatalab/MinerU GitHub 需要注意的几个点: 1. 使用root账户安装的,配置文件在…...
Vue 3 结合 TypeScript基本使用
Vue 3 结合 TypeScript 使用可以提供更加强大的类型检查和开发体验。以下是一些基本的步骤来开始使用 Vue 3 和 TypeScript: 1. 创建项目 你可以使用 Vue CLI 来快速创建一个支持 TypeScript 的 Vue 项目。首先确保你已经安装了 Node.js 和 npm。然后全局安装或更…...

Trotter steps的复杂性分析
总结 • 我们开发了使用汉密尔顿系数结构执行 Trotter 步骤的递归方法,超越了顺序方法。 • #Gate/Step 在汉密尔顿项数上是次线性的,而 #Step 仍然保持交换子缩放。 • 新结果给出了实空间中第二量化电子结构汉密尔顿的最快量子模拟。对第一量化量子模…...

mean,median,mode,var,std,min,max函数
剩余的函数都放在这篇里面吧 m e a n mean mean函数可以求平均值 a a a为向量时, m e a n ( a ) mean(a) mean(a)求向量中元素的平均值 a a a为矩阵时, m e a n ( a , 1 ) mean(a,1) mean(a,1)求矩阵中各列元素的平均值; m e a n ( a , 2 )…...

JavaScript实现tab栏切换
JavaScript实现tab栏切换 代码功能概述 这段代码实现了一个简单的选项卡(Tab)切换功能。它通过操作 HTML 元素的类名(class)来控制哪些选项卡(Tab)和对应的内容板块显示,哪些隐藏。基本思路是先…...
精确电压输出,家电和工业设备的完美选择,宽输入电压线性稳压器
WD5201线性稳压器的核心内容概述: 主要特点 • 高精度输出电压:2%精度。 • 输出电压可调:支持5V、3.3V、2.7V三档输出。 • 优化控制方式:提升效率。 • 宽输入电压范围:80305VAC。 • 无需功率电感和输入高压电…...
深入理解定时器:优先队列与时间轮实现
文章目录 1. 线程池概述线程池的基本特点: 2. 使用线程池的优先队列定时器实现2.1 优先队列定时器实现2.2 解释: 3. 使用时间轮的线程池定时器实现3.1 时间轮定时器实现 4. 总结 在定时器设计中,使用线程池来执行定时任务可以有效提高程序的性…...
autogen-agentchat 0.4.0.dev8版本的安装
1. 安装命令 pip install autogen-agentchat0.4.0.dev8 autogen-ext[openai]0.4.0.dev82. 版本检查 import autogen_agentchat print(autogen_agentchat.__version__)0.4.0.dev8import autogen_ext print(autogen_ext.__version__)0.4.0.dev83. 第一个案例 使用 autogen-age…...

JAVA |日常开发中读写XML详解
JAVA |日常开发中读写XML详解 前言一、XML 简介二、在 Java 中读取 XML2.1 使用 DOM(Document Object Model)方式读取 XML2.2 使用 SAX(Simple API for XML)方式读取 XML 三、在 Java 中写入 XML3.1 使用 DOM 方式写入…...

React 路由与组件通信:如何实现路由参数、查询参数、state和上下文的使用
🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

帮我写一篇关于AI搜索网页上编写的文章是否存在版权问题的文章, 字数在 3000 字左右。文心一言提问, 记录后用.
AI搜索网页上编写的文章是否存在版权问题? 在当今科技飞速发展的时代,AI搜索工具如雨后春笋般涌现,为人们获取信息提供了极大的便利。然而,随之而来的问题是,AI搜索案例中常常出现很多内容缺乏依据,这引发…...

电脑关机的趣味小游戏——system函数、strcmp函数、goto语句的使用
文章目录 前言一. system函数1.1 system函数清理屏幕1.2 system函数暂停运行1.3 system函数电脑关机、重启 二、strcmp函数三、goto语句四、电脑关机小游戏4.1. 程序要求4.2. 游戏代码 总结 前言 今天我们写一点稍微有趣的代码,比如写一个小程序使电脑关机…...

AttributeError: ‘DataFrame‘ object has no attribute ‘append‘的参考解决方法
文章目录 写在前面一、问题描述二、解决方法参考链接 写在前面 自己的测试环境: Ubuntu20.04 一、问题描述 运行开源的python代码的时候,遇到如下问题 AttributeError: DataFrame object has no attribute append二、解决方法 报错中的DataFrame是在…...

java垃圾回收机制介绍
Java垃圾回收机制(Garbage Collection, GC)是Java编程语言中的一项重要特性,它自动管理内存,释放不再使用的对象 1. 堆(Heap): • Java虚拟机(JVM)中用于存储对象实例的内…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...