当前位置: 首页 > news >正文

做网站5年工资多少/怎么关闭seo综合查询

做网站5年工资多少,怎么关闭seo综合查询,手机优化什么意思,鲅鱼圈做网站网工资页多少钱一个月📢本篇文章是博主强化学习(RL)领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅…

        📢本篇文章是博主强化学习(RL)领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在👉强化学习专栏:

       【强化学习】- 【单智能体强化学习】(1)---《单智能体强化学习《纲要》》

单智能体强化学习(Single-Agent Reinforcement Learning)《纲要》

目录

0.什么是强化学习?

1. 举个简单例子

2. 强化学习的基本元素

3. 如何学习:试错法

4.单智能体强化学习

【SARL】单智能体强化学习系列文章:

【MADRL】多智能体深度强化学习《纲要》

5. 强化学习的应用实例

6. 总结


0.什么是强化学习?

        强化学习(Reinforcement Learning,简称 RL)是一种让机器“通过尝试和错误学习”的方法。它模拟了人类和动物通过经验积累来学会做决策的过程,目的是让机器或智能体能够在复杂的环境中选择最优的行为,从而获得最大的奖励。


1. 举个简单例子

        想象一下你是一个小孩,在一个游乐场里,你需要做出一些选择:玩蹦床、滑滑梯,还是去玩旋转木马上?每次你做出选择后,游乐场会给你一些奖励,比如玩蹦床后你感觉非常开心(给你奖励),滑滑梯后你感到害怕(没有奖励)。你不知道这些奖励会如何,但随着时间的推移,你学会了什么行为能带来更好的感觉。

        这个过程类似于强化学习中的“学习过程”。智能体(你)通过尝试不同的行为(选择玩不同的设施)来获得奖励,然后根据这些奖励来调整自己的行为,最终找出最好的选择。


2. 强化学习的基本元素

在强化学习中,系统主要包括以下几个部分:

  • 智能体(Agent):做决策的主体,像上面例子中的小孩,或者是一个机器人。
  • 环境(Environment):智能体所在的世界或场所,游乐场就是一个环境,智能体在这个环境中做出决策。
  • 状态(State):环境在某一时刻的具体情况,像游乐场里可能的状态就是“你现在站在哪个设施旁边”。
  • 动作(Action):智能体在某个状态下可以选择的行为,像“去玩蹦床”、“去滑滑梯”。
  • 奖励(Reward):智能体选择某个动作后,环境给予的反馈,可能是正向奖励(玩得开心)或负向奖励(感到害怕)。

3. 如何学习:试错法

        强化学习的核心是“试错学习”。智能体通过与环境的互动,不断做出决策并获得反馈。通过这种方式,智能体学会了哪些行为会带来更多的奖励,哪些行为是无效的。

举个例子:

        假设你是一个游戏玩家,游戏中的目标是找到宝藏。游戏中的每个步骤都充满了未知。你可以走左边、走右边、爬山、挖洞等。你不知道哪个动作能带来宝藏,但你可以尝试:

  1. 第一次走右边,发现掉进了陷阱,得到了负奖励。
  2. 第二次走左边,发现了一些金币,得到了正奖励。
  3. 第三次走左边,发现了宝藏,得到了更高的奖励。

通过这些尝试,智能体逐渐知道走左边会更有可能获得奖励,最后学会了最佳的路径。


4.单智能体强化学习

        我们从强化学习的研究出发,最开始便是针对单智能体强化学习开展研究,然后再过渡到多智能体强化学习。单智能体强化学习(Single-Agent Reinforcement Learning,SARL)是强化学习的基础研究。

        单智能体强化学习涉及一个智能体在环境中学习和决策,目标是最大化该智能体的回报。与多智能体强化学习(Multi-Agent Reinforcement Learning, MARL)相比,单智能体强化学习(Single-Agent Reinforcement Learning, SARL)的主要区别在于:

  • 学习和决策的主体‌:SARL只有一个智能体在环境中学习和做决策,而MARL有多个智能体同时学习和决策‌1。
  • 交互性‌:SARL中智能体只与环境交互,不与其他智能体交互;而MARL中智能体不仅与环境交互,还与其他智能体交互,增加了问题的复杂性‌1。
  • 状态和动作空间‌:SARL的状态和动作空间相对简单,通常是固定的和可预测的;而MARL的状态和动作空间更为复杂,因为它们依赖于所有智能体的动作和状态‌1。
  • 优化目标‌:SARL优化单个智能体的回报;而MARL可能需要优化所有智能体的集体回报,或者在智能体之间达成某种均衡‌1。
  • 学习策略‌:SARL的学习策略相对直接,只需考虑单个智能体的学习;而MARL的学习策略更为复杂,需要考虑多智能体之间的协调和竞争‌。

【SARL】单智能体强化学习系列文章:

        SARL系列主要针对单智能体强化学习相关算法进行介绍,并给出相关Python代码和可移植程序,SARL系列文章纲要如下:(持续更新中)

1.【强化学习】单智能体强化学习《纲要》

2.【强化学习】Q-Learning算法

3.【强化学习】Sarsa算法

4.【强化学习】DQN算法

5.【强化学习】PG算法

6.【强化学习】REINFORCE算法

7.【强化学习】Actor-Critic算法

8.【强化学习】A2C算法 

9.【强化学习】DDPG算法 

10.【强化学习】PPO算法 

项目代码我已经放入GitCode里面,可以通过下面链接跳转:🔥

【强化学习】算法项目

后续相关单智能体强化学习算法也会不断在【强化学习】项目里更新,如果该项目对你有所帮助,请帮我点一个星星✨✨✨✨✨,鼓励分享,十分感谢!!!

若是下面代码复现困难或者有问题,也欢迎评论区留言

如果你想了解多智能体强化学习【MARL】可以移步下面这篇文章

【MADRL】多智能体深度强化学习《纲要》

或者专栏:

多智能体强化学习【MARL】专栏


5. 强化学习的应用实例

        强化学习不仅仅适用于游戏,它已经被广泛应用于很多现实世界的问题中,以下是一些经典的例子:

1. 游戏中的AI

        强化学习最著名的一个应用例子是 AlphaGo。AlphaGo是由DeepMind开发的人工智能,它通过强化学习击败了围棋世界冠军李世石。它的训练过程就是通过与自己对弈,不断调整自己的策略,最终掌握了围棋的高超技巧。

2. 自动驾驶

        自动驾驶汽车也是强化学习的一大应用领域。在自动驾驶中,智能体(即汽车)通过在真实世界或模拟环境中进行试验和错误,学习如何做出正确的决策——比如如何加速、减速、变道,甚至如何避免碰撞。通过不断试错,汽车能够学会在各种不同的路况中选择最安全、最合适的操作。

3. 机器人控制

        在机器人领域,强化学习也得到了广泛的应用。例如,一个机器人可能需要学会如何抓取物体,如何移动或走路。通过不断地“试”抓不同的物体,机器人的“抓取策略”会不断改进,最终学会了如何以最有效的方式抓取物体。


6. 总结

        强化学习就是让智能体通过与环境的互动,不断学习、调整自己的行为,以获得更多的奖励。它像是一个不断“试错”的过程,智能体通过尝试各种动作,从失败和成功中学习,最终找到最优的行为策略。


        博客都是给自己看的笔记,如有误导深表抱歉。文章若有不当和不正确之处,还望理解与指出。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请联系博主删除。如有错误、疑问和侵权,欢迎评论留言联系作者,或者添加VX:Rainbook_2,联系作者。✨

相关文章:

【SARL】单智能体强化学习(Single-Agent Reinforcement Learning)《纲要》

📢本篇文章是博主强化学习(RL)领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅…...

CSS 动画效果实现:图片展示与交互

​🌈个人主页:前端青山 🔥系列专栏:Css篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来Css篇专栏内容:CSS 动画效果实现:图片展示与交互 前言 在现代网页设计中,动态效果能够显著…...

【机器学习】—Transformers的扩展应用:从NLP到多领域突破

好久不见!喜欢就关注吧~ 云边有个稻草人-CSDN博客 目录 引言 一、Transformer架构解析 (一)、核心组件 (二)、架构图 二、领域扩展:从NLP到更多场景 1. 自然语言处理(NLP) 2…...

Linux权限机制深度解读:系统安全的第一道防线

文章目录 前言‼️一、Linux权限的概念‼️二、Linux权限管理❕2.1 文件访问者的分类(人)❕2.2 文件类型和访问权限(事物属性)✔️1. 文件类型✔️2. 基本权限✔️3. 权限值的表示方法 ❕2.3 文件访问权限的相关设置方法✔️1. ch…...

NineData云原生智能数据管理平台新功能发布|2024年11月版

本月发布 8 项更新,其中重点发布 2 项、功能优化 6 项。 重点发布 数据库 Devops - 数据生成支持多个数据源 NineData 支持在数据库中自动生成符合特定业务场景的随机数据,用于模拟实际生产环境中的数据情况,帮助用户在不使用真实数据的情况…...

Vue中控制组件的挂载位置

在 Vue 中,append-to-body“true” 主要用于一些第三方组件(如 Element UI 或 Ant Design Vue 中的弹出框、下拉菜单等)来控制组件的挂载位置。具体来说,当你设置 append-to-body“true” 时,它会将该组件的 DOM 元素插…...

查看docker容器日志

容器里面的服务运行报错了&#xff0c;要查看容器的日志 要查看 Docker 容器的日志&#xff0c;可以使用 docker logs 命令。以下是一些常见的使用方法&#xff1a; 基本用法 docker logs <container_name_or_id> 查看最近的日志 docker logs --tail 100 <contai…...

Apache Commons工具类库使用整理

文章目录 Apache Commons工具类库分类- commons-lang3字符串工具&#xff1a;StringUtils日期工具&#xff1a;DateUtils数值工具&#xff1a;NumberUtils对象工具&#xff1a;ObjectUtils数组工具&#xff1a;ArrayUtils异常工具&#xff1a;ExceptionUtils枚举工具&#xff1…...

力扣第89题 格雷编码

题目描述 格雷编码序列是一个二进制数字序列&#xff0c;其中的每两个相邻的数字只有一个二进制位不同。给定一个整数 n&#xff0c;表示格雷编码的位数&#xff0c;要求返回 n 位的格雷编码序列。 示例 1 输入&#xff1a; n 2输出&#xff1a; [0, 1, 3, 2]解释&#x…...

Linux C/C++编程中的多线程编程基本概念

【图书推荐】《Linux C与C一线开发实践&#xff08;第2版&#xff09;》_linux c与c一线开发实践pdf-CSDN博客《Linux C与C一线开发实践&#xff08;第2版&#xff09;&#xff08;Linux技术丛书&#xff09;》(朱文伟&#xff0c;李建英)【摘要 书评 试读】- 京东图书 (jd.com…...

解决Tomcat运行时错误:“Address localhost:1099 is already in use”

目录 背景: 过程&#xff1a; 报错的原因&#xff1a; 解决的方法&#xff1a; 总结&#xff1a; 直接结束Java.exe进程&#xff1a; 使用neststat -aon | findstr 1099 命令&#xff1a; 选择建议&#xff1a; 背景: 准备运行Tomcat服务器调试项目时&#xff0c;程序下…...

C/C++中的调用约定

在C/C编程中&#xff0c;调用约定(calling conventions)是一组指定如何调用函数的规则。主要在你调用代码之外的函数(例如OS API&#xff0c;操作系统应用程序接口)或OS调用你(如WinMain的情况)时起作用。如果编译器不知道正确的调用约定&#xff0c;那么你很可能会遇到非常奇怪…...

微信创建小程序码 - 数量不受限制

获取小程序码&#xff1a;小程序码为圆图&#xff0c;且不受数量限制。 目录 文档 接口地址 请求方式 功能描述 注意事项 获取 scene 值 请求参数 返回参数 对接 请求方法 获取小程序码 调用获取小程序码 总结 文档 接口地址 https://api.weixin.qq.com/wxa/get…...

springboot/ssm美食分享系统Java代码web项目美食烹饪笔记分享交流

springboot/ssm美食分享系统ava美食烹饪笔记分享交流系统web美食源码 基于springboot(可改ssm)vue项目 开发语言&#xff1a;Java 框架&#xff1a;springboot/可改ssm vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&#…...

【Redis篇】 List 列表

在 Redis 中&#xff0c;List 是一种非常常见的数据类型&#xff0c;用于表示一个有序的字符串集合。与传统的链表结构类似&#xff0c;Redis 的 List 支持在两端进行高效的插入和删除操作&#xff0c;因此非常适合实现队列&#xff08;Queue&#xff09;和栈&#xff08;Stack…...

多级IIR滤波效果(BIQUAD),system verilog验证

MATLAB生成IIR系数 采用率1k&#xff0c;截止频率30hz&#xff0c;Matlab生成6阶对应的biquad3级系数 Verilog测试代码 // fs1khz,fc30hz initial beginreal Sig_Orig, Noise_white, Mix_sig;real fs 1000;Int T 1; //周期int N T*fs; //1s的采样点数// 数组声明…...

【WPF中ControlTemplate 与 DataTemplate之间的区别?】

前言 WPF中ControlTemplate 与 DataTemplate之间的区别&#xff1f; 1. 定义&#xff1a; ControlTemplate 是用于定义 WPF 控件的外观和结构的模板。它允许您重新定义控件的视觉表现&#xff0c;而不改变控件的行为。 DataTemplate 是用于定义如何呈现数据对象的模板。它通…...

Keil5配色方案修改为类似VSCode配色

1. 为什么修改Keil5配色方案 视觉习惯&#xff1a;如果你已经习惯了VSCode的配色方案&#xff0c;尤其是在使用ESP-IDF开发ESP32时&#xff0c;Keil5的默认配色可能会让你感到不习惯。减少视觉疲劳&#xff1a;Keil5的默认背景可能过于明亮&#xff0c;长时间使用可能会导致视…...

ndp协议简介

在IPv6中&#xff0c;ARP&#xff08;地址解析协议&#xff09;被替代为邻居发现协议&#xff08;Neighbor Discovery Protocol&#xff0c;NDP&#xff09;。NDP是IPv6网络中用于发现邻居节点&#xff08;相邻设备&#xff09;的协议&#xff0c;类似于IPv4中的ARP。但与ARP不…...

stable diffusion实践操作-大模型介绍:SD的发展历史,SD1.5和SDXL之间的差别

大家有没有这样的困惑&#xff1a;在找模型时&#xff0c;老是会出现一些奇怪的标签&#xff0c;像 sd1.5、sdxl 之类的模型后缀&#xff0c;真让人摸不着头脑&#xff0c;一会儿 1.0&#xff0c;一会儿 1.5&#xff0c;一会儿 XL&#xff0c;完全搞不清楚状况。今天就来给大家…...

系统无法运行提示:sqlsut.dll初始化错误怎么解决?多种解决方法汇总一览

遇到 sqlsut.dll 初始化错误&#xff0c;这通常意味着 SQL Server 的某些组件未能正确加载或初始化。以下是一些可能的解决方法汇总&#xff0c;旨在帮助您排查和解决问题&#xff1a; 解决方法 1. 检查SQL Server服务状态•确认所有相关的SQL Server服务&#xff08;如SQL Se…...

通过waitress启动flask应用

假设你有一个名为 app.py 的文件&#xff0c;app 是指你的 Flask 应用实例。并且在这个文件中创建了一个 Flask 应用实例&#xff0c;那么你可以这样导入和使用它。 示例结构 假设你的项目结构如下&#xff1a; my_flask_app/ │ ├── app.py ├── waitress_server.py └─…...

Redis高阶之容错切换

当一台主机master宕掉之后&#xff0c;他的从机会取代主机么&#xff1f; 查看集群状态 127.0.0.1:6385> cluster nodes c8ff33e8da5fd8ef821c65974dda304d2e3327f9 192.168.58.129:638216382 slave f6b1fd5e58df90782f602b484c2011d52fc3482d 0 1733220836918 1 connecte…...

蓝桥杯准备训练(lesson2 ,c++)

3.1 字符型 char //character的缩写在键盘上可以敲出各种字符&#xff0c;如&#xff1a; a &#xff0c; q &#xff0c; &#xff0c; # 等&#xff0c;这些符号都被称为字符&#xff0c;字符是⽤单引号括 起来的&#xff0c;如&#xff1a; ‘a’ &#xff0c; ‘b’ &…...

【力扣】2094.找出3为偶数

思路 方法一&#xff1a;使用Set集合 1.首先是三层for循环&#xff0c;遍历&#xff0c;并且遇到不满足的情况&#xff0c;便跳过&#xff0c;继续计算。不如前导为0,以及遍历同一个数组下标的情况 2.使用Set集合来确保答案是唯一的&#xff0c;使用桶来标记也是可以的 3.但是…...

利用红黑树封装map,和set,实现主要功能

如果不知道红黑树是什么的时候可以去看看这个红黑树 思路 首先我们可以把封装分为两个层面理解&#xff0c;上层代码就是set,和map&#xff0c;底层就是红黑树 就相当于根据红黑树上面套了两个map,set的壳子&#xff0c;像下面这张图一样 对于map和set&#xff0c;map里面存…...

网络(TCP)

目录 TCP socket API 详解 套接字有哪些类型&#xff1f;socket有哪些类型&#xff1f; 图解TCP四次握手断开连接 图解TCP数据报结构以及三次握手&#xff08;非常详细&#xff09; socket缓冲区以及阻塞模式详解 再谈UDP和TCP bind(): 我们的程序中对myaddr参数是这样…...

CSS 选择器的优先级

一、基本概念 CSS 选择器的优先级决定了在样式冲突时&#xff0c;哪个样式规则将被应用到 HTML 元素上。通过理解 CSS 选择器的优先级&#xff0c;可以更好地控制网页元素的样式&#xff0c;避免样式冲突。 二、优先级计算规则 1. 内联样式 内联样式具有最高的优先级。 &l…...

留学生数学辅导作业随机过程高等线性代数概率论微积分优化统计

针对留学生数学辅导作业中的随机过程、高等线性代数、概率论、微积分、优化以及统计等科目&#xff0c;以下是一些详细的辅导建议和资源概述&#xff1a; 一、随机过程 概念理解&#xff1a; 随机过程是研究随机现象随时间演变的数学分支。它涉及概率论和数理统计的知识&#…...

移动机器人课程建图实验-ROSbug汇总

问题1描述 $ rosrun robot_state_publisher robot_state_publisher [ERROR] [1733131886.474757207]: [registerPublisher] Failed to contact master at [localhost:11311]. Retrying...解决方案 这个错误信息表明 robot_state_publisher 节点无法联系到 ROS master。通常&…...