12.6深度学习_模型优化和迁移_模型移植
八、模型移植
1. 认识ONNX
https://onnx.ai/
Open Neural Network Exchange(ONNX,开放神经网络交换)格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移。

ONNX的规范及代码主要由微软,亚马逊 ,Face book 和 IBM等公司共同开发,以开放源代码的方式托管在Github上。目前官方支持加载ONNX模型并进行推理的深度学习框架有: Caffe2, PyTorch, PaddlePaddle, TensorFlow等。

2. 导出ONNX
2.1 安装依赖包
pip install onnx
pip install onnxruntime
2.2 导出ONNX模型
import os
import torch
import torch.nn as nn
from torchvision.models import resnet18if __name__ == "__main__":dir = os.path.dirname(__file__)weightpath = os.path.join(os.path.dirname(__file__), "pth", "resnet18_default_weight.pth")onnxpath = os.path.join(os.path.dirname(__file__), "pth", "resnet18_default_weight.onnx")device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = resnet18(pretrained=False)model.conv1 = nn.Conv2d(#in_channels=3,out_channels=64,kernel_size=3,stride=1,padding=0,bias=False,)# 删除池化层model.maxpool = nn.MaxPool2d(kernel_size=1, stride=1, padding=0)# 修改全连接层in_feature = model.fc.in_featuresmodel.fc = nn.Linear(in_feature, 10)model.load_state_dict(torch.load(weightpath, map_location=device))model.to(device)# 创建一个实例输入x = torch.randn(1, 3, 224, 224, device=device)# 导出onnxtorch.onnx.export(model,x,onnxpath,#verbose=True, # 输出转换过程input_names=["input"],output_names=["output"],)print("onnx导出成功")
2.3 ONNX结构可视化
可以直接在线查看:https://netron.app/
也可以下载桌面版:https://github.com/lutzroeder/netron
3. ONNX推理
ONNX在做推理时不再需要导入网络,且适用于Python、JAVA、PyQT等各种语言,不再依赖于PyTorch框架;
3.1 简单推理
import onnxruntime as ort
import torchvision.transforms as transforms
import cv2 as cv
import os
import numpy as npimg_size = 224
transformtest = transforms.Compose([transforms.ToPILImage(), # 将numpy数组转换为PIL图像transforms.Resize((img_size, img_size)),transforms.ToTensor(),transforms.Normalize(# 均值和标准差mean=[0.4914, 0.4822, 0.4465],std=[0.2471, 0.2435, 0.2616],),]
)def softmax(x):e_x = np.exp(x - np.max(x))return e_x / e_x.sum(axis=1, keepdims=True)def cv_imread(file_path):cv_img = cv.imdecode(np.fromfile(file_path, dtype=np.uint8), cv.IMREAD_COLOR)return cv_imglablename = "飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车".split("、")if __name__ == "__main__":dir = os.path.dirname(__file__)weightpath = os.path.join(os.path.dirname(__file__), "pth", "resnet18_default_weight.pth")onnxpath = os.path.join(os.path.dirname(__file__), "pth", "resnet18_default_weight.onnx")# 读取图片img_path = os.path.join(dir, "test", "5.jpg")img = cv_imread(img_path)img = cv.cvtColor(img, cv.COLOR_BGR2RGB)img_tensor = transformtest(img)# 将图片转换为ONNX运行时所需的格式img_numpy = img_tensor.numpy()img_numpy = np.expand_dims(img_numpy, axis=0) # 增加batch_size维度# 加载onnx模型sess = ort.InferenceSession(onnxpath)# 运行onnx模型outputs = sess.run(None, {"input": img_numpy})output = outputs[0]# 应用softmaxprobabilities = softmax(output)print(probabilities)# 获得预测结果pred_index = np.argmax(probabilities, axis=1)pred_value = probabilities[0][pred_index[0]]print(pred_index)print("预测目标:",lablename[pred_index[0]],"预测概率:",str(pred_value * 100)[:5] + "%",)
输出结果:
[[6.7321511e-05 9.7113671e-11 7.6417709e-05 2.8661249e-02 7.0206769e-043.9052707e-04 9.7010124e-01 6.8206714e-07 4.1351362e-07 5.7089373e-09]]
[6]
预测目标: 青蛙 预测概率: 97.01%
3.2 使用GPU推理
需要安装依赖包:
pip install onnxruntime-gpu
代码:
# 导入FileSystemStorage
import time
import random
import os# 人工智能推理用到的模块
import onnxruntime as ort
import torchvision.transforms as transforms
import numpy as np
import PIL.Image as Imageimg_size = 32
transformtest = transforms.Compose([transforms.Resize((img_size, img_size)),transforms.ToTensor(),transforms.Normalize(# 均值和标准差mean=[0.4914, 0.4822, 0.4465],std=[0.2471, 0.2435, 0.2616],),]
)def softmax(x):e_x = np.exp(x - np.max(x))return e_x / e_x.sum(axis=1, keepdims=True)def imgclass():# AI推理# 读取图片imgpath = os.path.join(os.path.dirname(__file__), "..", "static/ai", filename)# 加载并预处理图像image = Image.open(imgpath)input_tensor = transformtest(image)input_tensor = input_tensor.unsqueeze(0) # 添加批量维度# 将图片转换为ONNX运行时所需的格式img_numpy = input_tensor.numpy()# 加载模型onnxPath = os.path.join(#os.path.dirname(__file__),"..","onnx","resnet18_default_weight_1.onnx",)# 设置 ONNX Runtime 使用 GPUproviders = ["CUDAExecutionProvider"]sess = ort.InferenceSession(onnxPath, providers=providers)# 使用模型对图片进行推理运算output = sess.run(None, {"input": img_numpy})output = softmax(output[0])print(output)ind = np.argmax(output, axis=1)print(ind)lablename = "飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船、卡车".split("、")res = {"code": 200, "msg": "处理成功", "url": img, "class": lablename[ind[0]]}相关文章:
12.6深度学习_模型优化和迁移_模型移植
八、模型移植 1. 认识ONNX https://onnx.ai/ Open Neural Network Exchange(ONNX,开放神经网络交换)格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移。 ONNX的规范及代码主要由微软…...
Grid++Report:自定义模板设计(自由表格使用),详细教程
实现效果 步骤 一、新建空白 初始状态都是空白页,如果不是,点击右上角->文件->新建空白 二、页面设置 右击页面灰色部分->页面设置 根据需求自定义页面 三、报表头设计 1、新增报表头 右击屏幕->新增->报表节->报表头 点击报表头…...
[Collection与数据结构] 位图与布隆过滤器
🌸个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 🏵️热门专栏: 🧊 Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 🍕 Collection与…...
idea中新建一个空项目
目的,为了在同一个目录下有多个小的项目:使用IDE为idea2022。 步骤: 点击新建项目,点击创建空项目,这里选择空项目是将其作为其他项目的一个容器,如图所示: 然后点击文件->项目结构…...
【Python】【Conda 】Conda 与 venv 虚拟环境优缺点全解:如何做出明智选择
目录 引言一、基本概念1.1 Conda 虚拟环境1.2 Python venv 虚拟环境 二、主要区别对比三、优缺点分析3.1 Conda 虚拟环境的优缺点3.2 Python venv 虚拟环境的优缺点 四、使用场景推荐4.1 使用 Conda 虚拟环境的场景4.2 使用 Python venv 虚拟环境的场景 五、虚拟环境管理工具对…...
深度学习在故障检测中的应用:从理论到实践
随着工业设备和信息系统的复杂性增加,故障检测成为企业运维的重要任务。然而,传统的基于规则或统计学的故障检测方法难以应对复杂多变的故障模式。深度学习作为一种强大的数据分析工具,为故障检测提供了新的解决思路。本文将介绍深度学习模型…...
自然语言处理与人工智能
自然语言处理(NLP)与人工智能(AI) 自然语言处理(NLP)是人工智能(AI)领域的一个重要分支,旨在使计算机能够理解、解释和生成自然语言。随着深度学习技术的进步࿰…...
量化交易系统开发-实时行情自动化交易-8.15.Ptrade/恒生平台
19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。 接下来会对于Ptrade/恒生平台介绍。 P…...
非常简单实用的前后端分离项目-仓库管理系统(Springboot+Vue)part 4
三十三、出入库管理 Header.vue导一下,RecordController加一个 //将入库数据和原有数据相加吧//新增PostMapping("/save")public Result save(RequestBody Record record) {return recordService.save(record) ? Result.success() : Result.fail();} GoodsManage.v…...
基于MATLAB的信号处理工具:信号分析器
信号(或时间序列)是与特定时间相关的一系列数字或测量值,不同的行业和学科将这一与时间相关的数字序列称为信号或时间序列。生物医学或电气工程师会将其称为信号,而统计学家或金融定量分析师会使用时间序列这一术语。例如…...
Codeforces Round 784 (Div. 4)
题目链接 A. Division? 题意 思路 模拟即可 示例代码 void solve() {int n;cin >> n;int ans;if(n > 1900) ans 1;else if(n > 1600) ans 2;else if(n > 1400) ans 3;else ans 4;cout << "Division " << ans << \n;}B. T…...
OpenNebula 开源虚拟平台,对标 VMware
Beeks Group 主要为金融服务提供商提供虚拟专用服务器和裸机服务器。该公司表示,转向 OpenNebula 不仅大幅降低了成本,还使其虚拟机效率提升了 200%,并将更多裸机服务器资源用于客户端负载,而非像以往使用 VMware 时那样用于虚拟机…...
软件项目标书参考,合同拟制,开发合同制定,开发协议,标书整体技术方案,实施方案,通用套用方案,业务流程,技术架构,数据库架构全资料下载(原件)
1、终止合同协议书 2、项目合作协议 3、合同交底纪要 4、合同管理台账 软件资料清单列表部分文档清单:工作安排任务书,可行性分析报告,立项申请审批表,产品需求规格说明书,需求调研计划,用户需求调查单&…...
Jenkins环境一站式教程:从安装到配置,打造高效CI/CD流水线环境-Ubuntu 22.04.5 环境离线安装配置 Jenkins 2.479.1
文章目录 Jenkins环境一站式教程:从安装到配置,打造高效CI/CD流水线环境-Ubuntu 22.04.5 环境离线安装配置 Jenkins 2.479.1一、环境准备1.1 机器规划1.2 环境配置1.2.1 设置主机名1.2.2 停止和禁用防火墙1.2.3 更新系统 二、安装配置Jenkins2.1 安装JDK…...
【Android】ARouter源码解析
本篇文章主要讲解了 ARouter 框架的源码分析,包括其初始化过程、核心方法等。 初始化 在使用ARouter的时候我们都会先进行初始化: ARouter.init(this);我们看下 init() 源码: public static void init(Application application) {// 检查…...
计算直线的交点数
主要实现思路 整体流程思路: 程序旨在解决给定平面上不同数量的直线(无三线共点),求出每种直线数量下所有可能的交点数量,并按要求格式输出的问题。整体通过初始化一个二维数组来存储不同直线数量与交点数量对应的存在…...
STM32基于HAL库的串口接收中断触发机制和适用场景
1. HAL_UART_Receive_DMA函数 基本功能 作用:启动一个固定长度的 DMA 数据接收。特点: 需要预先指定接收数据的长度(Size 参数)。DMA 会一直工作直到接收到指定数量的数据,接收完成后触发 HAL_UART_RxCpltCallback 回…...
java面试宝典
本文只摘抄部分宝典内容,完整宝典可以在打开下方链接,在网盘获取 ^ _ ^ 链接:java面试宝典 提取码: wxy1 复制这段内容后打开百度网盘手机App,操作更方便哦 链接: java前端面试宝典 提取码: wxy1 复制这段内容后打开百度网盘手机Appÿ…...
Scala—Slice(提取子序列)方法详解
Scala—Slice(提取子序列)方法详解 在 Scala 中,slice 方法用于从集合中提取一个连续的子序列(切片)。可以应用于多种集合类型,如 List、Array、Seq 等。 一、slice 方法的定义 slice 根据提供的起始索引…...
【电子通识】案例:USB Type-C USB 3.0线缆做直通连接器TX/RX反向
【电子通识】案例:连接器接线顺序评估为什么新人总是评估不到位?-CSDN博客这个文章的后续。最近在做一个工装项目,需要用到USB Type-C线缆做连接。 此前已经做好了线序规划,结果新人做成实物后发现有的USB Type-C线缆可用,有的不行。其中发现USB3.0的TX-RX信号与自己的板卡…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...
热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...
Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程
鸿蒙电脑版操作系统来了,很多小伙伴想体验鸿蒙电脑版操作系统,可惜,鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机,来体验大家心心念念的鸿蒙系统啦!注意:虚拟…...
倒装芯片凸点成型工艺
UBM(Under Bump Metallization)与Bump(焊球)形成工艺流程。我们可以将整张流程图分为三大阶段来理解: 🔧 一、UBM(Under Bump Metallization)工艺流程(黄色区域ÿ…...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...
React父子组件通信:Props怎么用?如何从父组件向子组件传递数据?
系列回顾: 在上一篇《React核心概念:State是什么?》中,我们学习了如何使用useState让一个组件拥有自己的内部数据(State),并通过一个计数器案例,实现了组件的自我更新。这很棒&#…...
