当前位置: 首页 > news >正文

协程设计原理与实现

协程设计原理与汇编实现

同步与异步

对于任何一个事情,都可以划分为不同的步骤。所谓同步,就先做第一个事情,按照这件事的步骤完成这件事之后,再去做第二件事。再去做第三件事,以此类推。

异步就是,可以先开始做第一件事,从第一个步骤开始,但是当做到某个步骤之后,需要暂停等待,于是跳转到了第二件事,又开始从第二件事的第一个步骤开始做,当做到某个步骤后,又需要暂时等待,于是跳转到了第三个事件,从第一个步骤开始做,可能做到某个步骤后,发现第一个事情暂停的步骤被唤醒了,于是转过头去继续把后续的事情做完,再去看第二件事等待的资源是否完成。以此类推。

所以从宏观上(即从某个时间段)来看,同步像是分开进行的,异步像是同时执行的。这一点和操作系统中的某些概念是类似的。

什么是协程

协程的核心就是,以同步的方式,实现异步的性能。以上面的例子讲解,就是用不同的函数实现不同的步骤,这样在编程看起来是同步的(就是所谓的以同步的方式),然后不同函数在实现步骤的时候,会设定一个类似于原语的操作,如果这个步骤无法立刻完成,就跳转到下一个事情中去,直到满足条件之后,再回来继续完成该事件(这个原语即是实现了异步的性能)。

如何实现协程

第一种方式:setjmp/longjmp

首先需要定义一个 jmp_buf类型的变量env,代表此时的环境编号,类似于存档点。

setjmp函数:调用此函数,会保存当前系统的堆栈里的数据,进行存档。返回值为0,代表首次进行存档。返回值为x,代表的下一次回退到存档点应该走的路线。

longjmp函数:调用此函数,会直接回退到存档点,其中函数的第二个参数x就是上面setjmp下一次要返回的值。(即下一次要走的路线)

举例:

#include<stdio.h>
#include<setjmp.h>jmp_buf env;int fun(int arg){printf("fun %d \n", arg);arg++;longjmp(env, arg);return 0;
}int main(){int ret = setjmp(env);if(ret == 0){fun(ret);}else if(ret == 1){fun(ret);}else if(ret == 2){fun(ret);}else if(ret == 3){fun(ret);}}

弊端

如果是多线程,会出现不同的堆栈,这样在保存的时候,会出现函数未定义等情况。不建议使用

第二种方式:ucontext

ucontext相比于上一个,类似于让用户自己实现了上下文信息的保存,而不是像setjmp一样通过调用函数让系统来保存。

定义了一个ucontext的结构体来保存上下文信息。

调用getcontext(&uc)函数把上下文信息保存在uc结构体中,并且初始化该结构体(初始化的内容:分配数组、确定返回、帮定函数)

调用swapcontext(&ctx,&ctx2),切换上下文。

#include<ucontext.h>
#include<stdio.h>ucontext_t ctx[3], main_ctx;
int count = 0;void fun1(){while (count ++ < 30){printf("1\n");swapcontext(&ctx[0], &ctx[1]);printf("4\n");}
}void fun2(){while (count ++ < 30){printf("2\n");swapcontext(&ctx[1], &ctx[2]);printf("3\n");}
}void fun3(){while (count ++ < 30){printf("3\n");swapcontext(&ctx[2], &ctx[0]);printf("6\n");}
}int main(){int stack1[2048] = {0};int stack2[2048] = {0};int stack3[2048] = {0};getcontext(&ctx[0]);ctx[0].uc_stack.ss_sp = stack1;ctx[0].uc_stack.ss_size = sizeof(stack1);ctx[0].uc_link = &main_ctx;makecontext(&ctx[0], fun1, 0);getcontext(&ctx[1]);ctx[1].uc_stack.ss_sp = stack2;ctx[1].uc_stack.ss_size = sizeof(stack2);ctx[1].uc_link = &main_ctx;makecontext(&ctx[1], fun2, 0);getcontext(&ctx[2]);ctx[2].uc_stack.ss_sp = stack3;ctx[2].uc_stack.ss_size = sizeof(stack3);ctx[2].uc_link = &main_ctx;makecontext(&ctx[2], fun3, 0);printf("swapcontext\n");swapcontext(&main_ctx, &ctx[0]);printf("\n");}

我的一些理解:

在正常执行主函数调用子函数的时候,系统内部是会帮我们实现一些操作的,会保存当前堆栈的信息,然后再另外分配一个新的空间(堆栈)用来执行子函数,当子函数执行完毕再返回调用时堆栈的状态。

那么协程其实就是要求用户自己实现了这样一个过程,而不是再交给系统来做了。首先需要初始化ctx结构体,就相当于完成了调用子函数的功能,getcontext实现保存当前堆栈信息,ctx的uc_stack实现了子函数内存的分配,ctx的uc_link实现了子函数的返回地点,makecontext实现了给这个子函数命名。与调用子函数不同的点在于,可以在子函数内部使用swapcontext用于不同子函数的切换,其中内部的堆栈会记录该子函数目前执行到了哪一个步骤,继续往下执行。

从这张图其实可以看出所谓的“同步的方式,实现异步的性能”,手动模拟了调用子函数的过程,即为“同步的方式”,但是在实现子函数内部中,又允许不同子函数之间切换(蓝色是协程实现的核心),即实现了“异步的性能”。

协程实现了类似于操作系统中处理机的时间片轮转的操作。

弊端:这样如果是协程之间互相切换,不可控,于是需要实现一个调度器schedual

调度器实现的就是不让子函数之间相互切换,而是需要切换时,切到主函数中去,这样可控。以下代码中,main里面的while循环就是一个简单的调度器,子函数中swapcontext也是跳转到主函数中去。

#include<ucontext.h>
#include<stdio.h>ucontext_t ctx[3], main_ctx;
int count = 0;void fun1(){while (count ++ < 30){printf("1\n");//swapcontext(&ctx[0], &ctx[1]);swapcontext(&ctx[0], &main_ctx);  //跳转到主函数中去,而不是子涵数间互转printf("4\n");}
}void fun2(){while (count ++ < 30){printf("2\n");//swapcontext(&ctx[1], &ctx[2]);swapcontext(&ctx[1], &main_ctx);printf("3\n");}
}void fun3(){while (count ++ < 30){printf("3\n");//swapcontext(&ctx[2], &ctx[0]);swapcontext(&ctx[2], &main_ctx);printf("6\n");}
}int main(){int stack1[2048] = {0};int stack2[2048] = {0};int stack3[2048] = {0};getcontext(&ctx[0]);ctx[0].uc_stack.ss_sp = stack1;ctx[0].uc_stack.ss_size = sizeof(stack1);ctx[0].uc_link = &main_ctx;makecontext(&ctx[0], fun1, 0);getcontext(&ctx[1]);ctx[1].uc_stack.ss_sp = stack2;ctx[1].uc_stack.ss_size = sizeof(stack2);ctx[1].uc_link = &main_ctx;makecontext(&ctx[1], fun2, 0);getcontext(&ctx[2]);ctx[2].uc_stack.ss_sp = stack3;ctx[2].uc_stack.ss_size = sizeof(stack3);ctx[2].uc_link = &main_ctx;makecontext(&ctx[2], fun3, 0);printf("swapcontext\n");//简单的调度实现while(count < 30){swapcontext(&main_ctx, &ctx[count%3]);}printf("\n");}

课程地址:www.github.com/0voice 

相关文章:

协程设计原理与实现

协程设计原理与汇编实现 同步与异步 对于任何一个事情&#xff0c;都可以划分为不同的步骤。所谓同步&#xff0c;就先做第一个事情&#xff0c;按照这件事的步骤完成这件事之后&#xff0c;再去做第二件事。再去做第三件事&#xff0c;以此类推。 异步就是&#xff0c;可以…...

合并区间C和C++的区别、布尔、整型、浮点、指针类型和0做比较、malloc、calloc、realloc的区别

56. 合并区间 class Solution { public:vector<vector<int>> merge(vector<vector<int>>& intervals) {//先按照每个区间的左元素排序&#xff0c;这样每个区间的左边界就固定了&#xff0c;所以之后考虑相邻的//区间是否是相交的就行 类似与栈的…...

Flutter 图片编辑板(一) 事件路由

一个图片编辑板&#xff0c;有两部分组成。编辑板和内容项。每一个内容项是被InteractiveViewer修饰的widget&#xff0c;具有缩放偏移的功能。 在图片编辑板上&#xff0c; 会有多个内容相&#xff0c;图片或文字&#xff08;添加文字目前还没做过&#xff09;。 当要编辑其中…...

【Java】—— 图书管理系统

基于往期学习的类和对象、继承、多态、抽象类和接口来完成一个控制台版本的 “图书管理系统” 在控制台界面中实现用户与程序交互 任务目标&#xff1a; 1、系统中能够表示多本图书的信息 2、提供两种用户&#xff08;普通用户&#xff0c;管理员&#xff09; 3、普通用户…...

数据库基础入门:从零开始学习数据库的核心概念

数据库是现代软件开发的核心组成部分之一&#xff0c;无论是网站、手机应用还是企业管理系统&#xff0c;都离不开数据库的支持。本文将带你从零开始&#xff0c;逐步了解数据库的基本概念和常见操作。 什么是数据库&#xff1f; 数据库&#xff08;Database&#xff09;是一个…...

Y20030002 微信+Java+Jsp+Servlet+MySQL的问卷调查小程序的设计与实现 源代码 配置文档 全套资料

问卷调查微信小程序 1.摘要2. 系统开的背景和意义3. 国内外研究现状4. 系统功能5.界面展示6.源码获取 1.摘要 摘 要&#xff1a;本文深入研究并实现了一个基于微信小程序的问卷调查系统。微信小程序问卷调查系统借助于微信小程序的便捷性和普及性&#xff0c;为用户提供了一个…...

ros项目dual_arm_pick-place(urdf文件可视化查看)

前言 一直想写一些项目的讲解&#xff0c;今天&#xff08;2024.12.05&#xff09;可以说正式开始了。 dual_arm_pick-place项目&#xff0c;是关于两个机械臂协同传递物品。 正文 这次的话&#xff0c;给大家讲一下里面的urdf文件。 这篇文章主要来看一下项目中的urdf文件…...

AI-安全-B站

1 需求 百度-林道正-《大模型合规探索》火山引擎-林泽韬-《大模型安全挑战与防护实践》Chamd5-bayuncao-《基于RAG的AI代码审计框架》德国电信咨询有限公司-杨麟-《AI在SOC中的应用发展》360-李亚青-《以模制模&#xff0c;大模型安全的解决之道》金晴云华-富吉祥-《安全大脑在…...

【C#设计模式(19)——备忘录模式(MementoPattern)】

前言 备忘录模式&#xff1a;将想要备份的信息交给备忘录对象来管理。通过设置初始、备份、修改、恢复等状态展示备忘录模式的使用。 代码 //备忘录类 public class Memento {private string state;public string State { get>state;}public Memento(string state){this.st…...

第三部分:进阶概念 8.事件处理 --[JavaScript 新手村:开启编程之旅的第一步]

JavaScript 事件处理是 Web 开发中不可或缺的一部分&#xff0c;它允许开发者响应用户的交互行为&#xff08;如点击、键盘输入等&#xff09;或浏览器的行为&#xff08;如页面加载完成&#xff09;。通过事件处理&#xff0c;我们可以使网页更加动态和互动。以下是关于 JavaS…...

工具推荐-js爬取工具

现在测试方向都偏向于从js中的接口来入手找到可以进的点&#xff0c;关于快速扫描js文件来发现敏感接口的工具有很多&#xff0c;下面的jjjjs就是其一 项目地址: GitHub - ttstormxx/jjjjjjjjjjjjjs: 爬网站JS文件&#xff0c;自动fuzz api接口&#xff0c;指定api接口&#x…...

Android问题记录 - Inconsistent JVM-target compatibility detected for tasks

文章目录 前言开发环境问题描述问题分析解决方案补充内容最后 前言 前段时间升级Android Studio后修复了一堆问题&#xff0c;详情请看&#xff1a;Android问题记录 - 适配Android Studio Ladybug/Java 21/AGP 8.0&#xff08;持续更新&#xff09;。我以为问题已经全部解决了…...

ejb组件(rmi) webservice平台(xml)

springboot bean 在 Spring Boot 中&#xff0c;Bean 是 Spring 框架的核心概念之一&#xff0c;表示由 Spring 容器管理的对象。通过 Bean 或其他注解&#xff08;如 Component、Service、Repository 等&#xff09;来定义和管理这些对象。以下是关于 Spring Boot 中 Bean 的…...

【jvm】垃圾回收的重点区域

目录 1. 说明2. 堆&#xff08;Heap&#xff09;3. 方法区&#xff08;Method Area&#xff09; 1. 说明 1.JVM&#xff08;Java Virtual Machine&#xff09;垃圾回收的重点区域主要集中在堆&#xff08;Heap&#xff09;和方法区&#xff08;Method Area&#xff09;。2.堆是…...

PyQt信号槽实现页面的登录与跳转 #页面进一步优化

将登录框中的取消按钮使用信号和槽的机制&#xff0c;关闭界面。 将登录按钮使用信号和槽连接到自定义的槽函数中&#xff0c;在槽函数中判断ui界面上输入的账号是否为"admin"&#xff0c;密码是否为"123456",如果账号密码匹配成功&#xff0c;当前界面关…...

谈谈web3

全面解析 Web3&#xff1a;未来互联网的革命性进程 引言&#xff1a;互联网进化的三部曲 互联网的发展经历了三个重要阶段&#xff0c;每一个阶段都深刻地改变了我们的生活方式&#xff1a; Web1&#xff08;1990-2005&#xff09;&#xff1a;静态互联网时代&#xff0c;人…...

正则表达式实战例子

正则表达式实战例子 1. 验证电子邮件地址 定义一个合理的电子邮件格式&#xff0c;并检查给定的字符串是否符合这个模式。 import redef is_valid_email(email):# 定义电子邮件格式的正则表达式pattern r^[a-zA-Z0-9_.-][a-zA-Z0-9-]\.[a-zA-Z0-9-.]$return bool(re.match(…...

Hadoop不同版本的区别

免费springboot&#xff0c;vue&#xff0c;springcloudalibaba视频&#xff0c;有兴趣可以看看 <!-- springboot&#xff0c;springboot整合redis&#xff0c;整合rocketmq视频&#xff1a; --> https://www.bilibili.com/video/BV1nkmRYSErk/?vd_source14d27ec13a473…...

QtCreator UI界面 菜单栏无法输入中文

如下图红色所示的区域&#xff0c;直接输入是无法输入中文的&#xff1a; 解决方法&#xff1a;在右边的属性值里输入即可 也可以参考这位同学的解决方法&#xff1a;友情链接...

java switch及其新特性

switch是什么 在Java中&#xff0c;switch语句是一种多分支选择结构&#xff0c;它允许程序根据一个表达式的值从多个代码块中选择执行哪一个。switch语句通常比多个if-else语句更清晰、更易读。 Java switch语句的基本语法&#xff1a; switch (expression) {case value1:/…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

Python的__call__ 方法

在 Python 中&#xff0c;__call__ 是一个特殊的魔术方法&#xff08;magic method&#xff09;&#xff0c;它允许一个类的实例像函数一样被调用。当你在一个对象后面加上 () 并执行时&#xff08;例如 obj()&#xff09;&#xff0c;Python 会自动调用该对象的 __call__ 方法…...