REDMI瞄准游戏赛道,推出小屏平板
近日,REDMI推出了一款8.8英寸的小屏平板,引发市场关注。该平板采用LCD屏幕,搭载天玑9400处理器,定位游戏市场,意在开拓小屏平板的新领域。
小屏平板新尝试
这款REDMI平板未追随大屏潮流,而是选择了8.8英寸的LCD屏幕,配备高刷新率,满足游戏玩家需求。同时,采用全金属机身和3.5mm耳机孔,设计独特。
游戏定位显特色
REDMI此款平板瞄准游戏市场,通过高刷新率屏幕、有线耳机方案等配置,提升游戏体验。小屏平板在游戏视野、握持感等方面具有优势,或将成为游戏玩家的新选择。

图片来自苹果
小屏平板瞄准游戏赛道的用户评价
1. 游戏体验出色:
用户普遍认为,Redmi小屏平板在游戏体验方面表现出色。8.8英寸的高刷新率LCD屏幕,不仅满足了游戏玩家对刷新率的苛求,还提供了宽广的游戏视野,尤其在FPS和MOBA等电竞手游中优势明显。同时,有线耳机方案降低了音频时延,进一步提升了游戏体验。
2. 散热性能优越:
小屏平板在散热方面远超游戏手机。得益于更大的机身尺寸,平板可以容纳更高规格的散热设计,避免了因过热导致的降频问题,游戏帧率更加稳定。这一特点受到了游戏玩家的广泛好评。
3. 性价比突出:
Redmi小屏平板以较低的价格提供了高性能的游戏体验,被用户誉为性价比之选。相比其他品牌的小屏平板或游戏手机,Redmi平板在价格和性能上找到了良好的平衡点。
4. 便携性与握持感:
用户表示,小屏平板的便携性和握持感也是其优势之一。8.8英寸的屏幕大小适中,既方便携带又易于单手握持,适合长时间游戏或日常使用。
相关文章:
REDMI瞄准游戏赛道,推出小屏平板
近日,REDMI推出了一款8.8英寸的小屏平板,引发市场关注。该平板采用LCD屏幕,搭载天玑9400处理器,定位游戏市场,意在开拓小屏平板的新领域。 小屏平板新尝试 这款REDMI平板未追随大屏潮流,而是选择了8…...
springai结合ollama
目录 ollama 介绍 使用 下载: 安装: 点击这个玩意next就行了。 运行 spring ai使用ollama调用本地部署的大模型 加依赖 配置yml 写代码 ollama 介绍 官网:Ollama Ollama是一个用于部署和运行各种开源大模型的工具; …...
React第十三节开发中常见问题之(视图更新、事件处理)
一、视图更新有哪些方案? useState用法介绍 1、对于数据变量 正常的增删改查,只会让数据更新,但是不会触发 React 视图的更新; 如: <script lang"jsx">const baseTable [{name:Andy, age: 18, id…...
【Appium报错】安装uiautomator2失败
目录 1、通过nmp安装uiautomator2:失败 2、通过 Appium 的平台直接安装驱动程序 3、通过pip 来安装 uiautomator2 1、通过nmp安装uiautomator2:失败 我先是通过npm安装的uiautomator2,也显示已经安装成功了: npm install -g …...
DataSophon集成CMAK KafkaManager
本次集成基于DDP1.2.1 集成CMAK-3.0.0.6 设计的json和tar包我放网盘了. 通过网盘分享的文件:DDP集成CMAK 链接: https://pan.baidu.com/s/1BR70Ajj9FxvjBlsOX4Ivhw?pwdcpmc 提取码: cpmc CMAK github上提供了zip压缩包.将压缩包解压之后 在根目录下加入启动脚本…...
Ubuntu22.04深度学习环境安装【显卡驱动安装】
前言 使用Windows配置环境失败,其中有一个包只有Linux版本,Windows版本的只有python3.10的,所以直接选用Linux来配置环境,显卡安装比较麻烦,单独出一期。 显卡驱动安装 方法一:在线安装(操作…...
21届秋/校招面经
开篇先说一下我自身情况,东南大学本科计算机科学与技术专业毕业,gpa3.2/4.8。零零散散搞过一年多ACM,去年(2019)在icpc上海站拿了铜之后增加了信心(因为当时训练总时间半年不到),于是…...
相机动态/在线标定
图1 图2 基本原理 【原理1】平行线在射影变换后会交于一点。如图所示,A为相机光心,蓝色矩形框为归一化平面,O为平面中心。地面四条黄色直线为平行且等距的车道线。HI交其中两条车道线于H、I, 过G作HI的平行线GM交车道线于M。HI、GM在归一化平面上的投影分别为JK、PN,二者会…...
MySQL 8.0 新特性汇总
文章目录 前言1. 运维管理 1.1 可持久化变量1.2 管理员端口1.3 资源组1.4 数据库粒度只读1.5 show processlist 实现方式1.6 加速索引创建速度1.7 控制连接的内存使用量1.8 克隆插件1.9 mysqldump 新增参数1.10 慢日志增强1.11 快速加列1.12 InnoDB 隐藏主键1.13 Redo 配置1.14…...
Resnet C ++ 部署 tensort 部署(四)
Resnet C 部署 pytorch功能测试(一) Resnet C 部署 模型训练(二) Resnet C 部署 模型测试&转 onnx(三) Resnet C 部署 tensort 部署(四) 之后,开始onnx 转trt 部…...
《Java核心技术I》对并发散列映射的批操作
对并发散列映射的批操作 Java API提供了批处理,计时其他线程处理映射,这些操作也能安全的执行。 3种不同操作: search(搜索),为每个键或值应用一个函数,直到函数生成一个非null的结果,然后搜索终止&…...
记录一次使用git无权限的问题排查
正常的配置了公私钥之后,在gitlab中也存储了配对的公钥,但当使用git clone 时,总是报无权限 由于在这台机器中添加了多个公私钥,有点复杂,我们可以使用命令 ssh -vvvT 调试一下 ssh -vvvT yourGitlabAddr...
appium学习之二:adb命令
1、查看设备 adb devices 2、连接 adb connect IP:端口 3、安装 adb install xxx.apk 4、卸载 adb uninstall 【包名】 5、把对应目录下的1.txt文件传到手机sdcard下 adb push 1.txt /sdcard 6、进入对应的设备里 adb shell 7、切入sdcard目录 cd /sdcard 8、ls 查…...
Linux Vi/Vim使用 ⑥
掌握 CentOS 7 下的 Vi/Vim 编辑器:从安装到精通 在 CentOS 7 系统的日常运维、编程开发以及各类文本处理场景中,Vi/Vim 编辑器都是不可或缺的得力工具。它以轻量、高效、功能强大著称,虽然初次上手有一定学习门槛,但掌握之后便能…...
JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测
JCR一区牛顿-拉夫逊优化算法分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测 目录 JCR一区牛顿-拉夫逊优化算法分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.中科院…...
easyExcel实现表头批注
背景: 网上大部分都不能直接使用,为此总结一个方便入手且可用的工具,用自定义注解实现 依赖包: <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>…...
Pytest测试用例使用小结
基础使用 Pytest 测试用例实现代码 import pytest from server.service import Servicepytest.fixture def service():return Service(logger)class TestService:classmethoddef setup_class(cls):"""初始化设置一次:return:"""logger.info(&q…...
LeetCode题练习与总结:132 模式--456
一、题目描述 给你一个整数数组 nums ,数组中共有 n 个整数。132 模式的子序列 由三个整数 nums[i]、nums[j] 和 nums[k] 组成,并同时满足:i < j < k 和 nums[i] < nums[k] < nums[j] 。 如果 nums 中存在 132 模式的子序列 &a…...
IdentityServer4框架、ASP.NET core Identity
OAuth2.0 IdentityServer4 官网 中文官网 ASP.NET Core Identity提供了一个用来管理和存储用户账户的框架. IdentityServer4是基于ASP.NET Core实现的认证和授权框架,是对OpenID Connect和OAuth 2.0协议的实现。 IdentityServer是一个中间件,它可以添加符合OpenID…...
【分子材料发现】——GAP:催化过程中吸附构型的多模态语言和图学习(数据集处理详解)(二)
Multimodal Language and Graph Learning of Adsorption Configuration in Catalysis https://arxiv.org/abs/2401.07408Paper Data: https://doi.org/10.6084/m9.figshare.27208356.v2 1 Dataset CatBERTa训练的文本字符串输入来源于Open Catalyst 2020 (OC20…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...
怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)
+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...
