当前位置: 首页 > news >正文

pandas一行拆成多行

import pandas as pd
df = pd.DataFrame({'Country':['China','US','Japan','EU','UK/Australia', 'UK/Netherland'],'Number':[100, 150, 120, 90, 30, 2],'Value': [1, 2, 3, 4, 5, 6],'label': list('abcdef')})# 法一 推荐
df2=df.drop('Country', axis=1).join(df['Country'].str.split('/', expand=True).stack().reset_index(level=1, drop=True).rename('Country'))
df.drop('Country', axis=1).join(df['Country'].str.split('/', expand=True).stack().reset_index(level=1, drop=True).rename('Country'))
print(df2)
#法二
tmp =df.set_index(["Number", "Value", "label"])["Country"].str.split("/", expand=True).stack()
result = tmp.reset_index(drop=True, level=-1).reset_index()
result = result.rename(columns={0: 'Country222222'})print(df)
print(result)

在这里插入图片描述

说明

  1. df.drop()通过指定标签名称和相应的轴,或直接给定索引或列名称来删除行或列,axis:轴的方向,0为行,1为列,默认为0
  2. stack()函数:“逆透视”就是将索引,特别是将列名转换为普通的列,方便后期计算,这个在excel里面叫做二维表转换为一维表。
    处理前
    step1
    重置索引
    两列组合做索引

3.pivot_table()透视

# 1. 单层统计 -- 根据名称分组统计不同颜色的数量总和
table = pd.pivot_table(df, values="数量", index="名称", columns="颜色", aggfunc=np.sum)
table2. fill_value参数:设定fill_value=0: 缺失值充填为0;marigins 参数:设定margins=True: 对行和列的数据进行统计输出
# 2. 单层统计 -- 根据名称分组统计不同颜色的数量平均值
table = pd.pivot_table(df, values="数量", index="名称", columns="颜色", aggfunc="mean", fill_value=0, margins=True)
table3. columns参数:传入列表,相当于同时对多个特征进行分类统计
# 3. 复合统计1 - 根据名称分组统计不同颜色和尺寸的数量总和
table = pd.pivot_table(df, values="数量", index="名称", columns=["颜色", "尺寸"], aggfunc="sum", fill_value=0,margins=True)
table4. index参数:传入一个列表,**就是相当于进行多层级的分组**
# 4. 复合统计2 - 根据名称和大小分组统计不同颜色的数量总和
table = pd.pivot_table(df, values="数量", index=["名称", "尺寸"], columns=["颜色"], aggfunc="sum", fill_value=0, margins=True)
table5. aggfunc参数: 聚合函数可以是函数,函数列表,字典。如果传递的是字典,则健为要聚合的列,值是函数或函数列表。聚合函数可包括:mean(平均值), sum(求和), max(最大值), min(最小值), size(计数), var(方差),std(标准差), median(中位数) 等。
# 5.复合统计3 - 根据名称统计不同颜色的数量总和,以及厚度的标准差
# 为方便演示,加入1新特征厚度值
df["厚度"] = [2, 5, 1, 2, 4, 5]
table = pd.pivot_table(df, values=["数量", "厚度"], index="名称", columns=["颜色"], aggfunc={"数量": np.sum, "厚度": np.std}, fill_value=0, margins=True)
table

处理前
处理后1 相当于分组
处理后

相关文章:

pandas一行拆成多行

import pandas as pd df pd.DataFrame({Country:[China,US,Japan,EU,UK/Australia, UK/Netherland],Number:[100, 150, 120, 90, 30, 2],Value: [1, 2, 3, 4, 5, 6],label: list(abcdef)})# 法一 推荐 df2df.drop(Country, axis1).join(df[Country].str.split(/, expandTrue).…...

今天调了个转速的小BUG

同事说转速表有个bug,转速停止后,继电器没有恢复到初始状态。若停止之前是报警,继电器吸合,则停止后继电器还是吸合。我心想不会啊,这软件都弄了好几年了,一直也没出现过状况。 经过与调试同事的沟通&#…...

第三节、电机定速转动【51单片机-TB6600驱动器-步进电机教程】

摘要:本节介绍用定时器定时的方式,精准控制脉冲时间,从而控制步进电机速度 一、计算过程 1.1 电机每一步的角速度等于走这一步所花费的时间,走一步角度等于步距角,走一步的时间等于一个脉冲的时间 w s t e p t … ……...

从一个Bug谈前端响应拦截器的应用

一、问题场景 今天在开发商品管理系统时,遇到了一个有趣的问题:当添加重复的商品编号时,页面同时弹出了两条 "商品编号已存在" 错误提示: 这个问题暴露了前端错误处理机制的混乱,让我们从这个问题出发&…...

JS进阶DAY4|节点操作

嘿👋 今天我们要一起深入探索JavaScript中的DOM操作,这是前端开发中不可或缺的技能。🌟 准备好了吗?让我们一起跳进DOM的海洋,看看怎么用代码操控网页的结构吧! 目录 1. 增加节点 1.1 使用 appendChild 方…...

【Web】2023安洵杯第六届网络安全挑战赛 WP

目录 Whats my name easy_unserialize signal Swagger docs 赛题链接:GitHub - D0g3-Lab/i-SOON_CTF_2023: 2023 第六届安洵杯 题目环境/源码 Whats my name 第一段正则用于匹配以 include 结尾的字符串,并且在 include 之前,可以有任…...

go 语言中协程和GMP模型

为什么需要协程? 协程用来更加精细地利用线程,支撑超高的并发的。协程,从 runtime 的角度看,协程就是一个被调度的 g 结构体。 G 就是协程,M 是线程,P 是为了优化多线程并发时,会抢夺协程队列的…...

coco数据集转换SAM2格式

coco是一个大json汇总了所有train的标签 SAM2训练一张图对应一个json标签 import json import os from pycocotools import mask as mask_utils import numpy as np import cv2def poly2mask(points, width, height):points_array np.array(points, dtypenp.int32).reshape(-…...

【CMD、PowerShell和Bash设置代理】

【CMD、PowerShell和Bash设置代理】 1. CMD(命令提示符)临时设置代理(只对当前会话有效):查看当前代理设置:清除临时代理设置:永久设置代理(对所有新的 CMD 会话有效)&am…...

22智能 代码作业集合

3-2 #include <stdio.h>int main() {int a 21;int b 10;int c ;c a b;printf("Line 1 - c 的值是 %d\n", c );c a - b;printf("Line 2 - c 的值是 %d\n", c );c a * b;printf("Line 3 - c 的值是 %d\n", c );c a / b;printf("…...

实现一个简单的后台架子(侧边栏菜单渲染,折叠,黑白主题,组件主题色,全屏,路由快捷栏)

目录 侧边栏菜单渲染 侧边栏折叠 黑白主题 全屏切换 切换组件主题色 tab快捷栏 代码 侧边栏菜单渲染 结合ElementPlus组件库进行实现 新建的Vue3项目,引入了格式化样式normalize.css和ElementPlus,并进行了全局引入 并进行了全局引入 设置高度为100% 粘贴ElementPlus的…...

vue3-canvas实现在图片上框选标记(放大,缩小,移动,删除)

双图版本&#xff08;模板对比&#xff09; 业务描述&#xff1a;模板与图片对比&#xff0c;只操作模板框选的位置进行色差对比&#xff0c;传框选坐标位置给后端&#xff0c;返回对比结果显示 draw.js文件&#xff1a; 新增了 createUuid&#xff0c;和求取两个数组差集的方…...

unity3d—demo(2d人物左右移动发射子弹)

目录 人物代码示例&#xff1a; 子弹代码示例&#xff1a; 总结上面代码&#xff1a; 注意点&#xff1a; 人物代码示例&#xff1a; using System.Collections; using System.Collections.Generic; using UnityEngine;public class PlayerTiao : MonoBehaviour {public f…...

【ETCD】【源码阅读】 深入解析 raftNode.start`函数:Raft 核心启动逻辑剖析

raftNode.start方法 是 etcd 中 Raft 模块的核心启动点&#xff0c;其职责是管理 Raft 状态机的状态变迁、日志处理及集群通信等逻辑。通过对源码的逐行分析&#xff0c;我们将全面揭示其运行机制&#xff0c;探讨其设计背后的分布式系统理念。 函数核心结构 raftNode.start 方…...

Robust Depth Enhancement via Polarization Prompt Fusion Tuning

paper&#xff1a;论文地址 code&#xff1a;github项目地址 今天给大家分享一篇2024CVPR上的文章&#xff0c;文章是用偏振做提示学习&#xff0c;做深度估计的。模型架构图如下 这篇博客不是讲这篇论文的内容&#xff0c;感兴趣的自己去看paper&#xff0c;主要是分享环境&…...

NEFTune,SFT训练阶段给Embedding加噪音

仿照CV里&#xff0c;数据增强的思路&#xff08;给图像做旋转、反转、改变亮度等&#xff09;&#xff1b;NLP里&#xff0c;SFT训练数据较少时&#xff0c;也可往embedding上加噪音&#xff0c;来增加训练数据的丰富程度。进而提升最终训练效果。 前提假设&#xff1a;Embed…...

uniapp -- 实现页面滚动触底加载数据

效果 首选,是在pages.json配置开启下拉刷新 {"path": "pages/my/document/officialDocument","style": {"navigationStyle":</...

L22.【LeetCode笔记】相交链表(新版)

目录 1.题目 代码模板 2.分析 ​编辑 算法误区 正确方法1 但不能通过所有的测试用例 修改后 提交结果 正确方法2 节省代码的技巧 1.题目 https://leetcode.cn/problems/3u1WK4/description/ 给定两个单链表的头节点 headA 和 headB &#xff0c;请找出并返回两个单…...

智能时代网络空间认知安全新观察

文章目录 前言一、历史上的四次认知革命二、人工智能革命掀起认知安全新浪潮三、人工智能技术塑造认知安全新范式四、人工智能治理应对认知安全新思考 前言 12月5日&#xff0c;在2024第三届北外滩网络安全论坛上以“智能时代网络空间认知安全新观察”为主题作主旨演讲&#x…...

游戏如何应对模拟器作弊

模拟器是指能在PC端模拟出安卓手机系统的软件&#xff0c;市面上比较常见的安卓模拟器有&#xff1a;雷电模拟器、MuMu模拟器、夜神模拟器等。 市面上常见的模拟器 模拟器既可以节省手机内存空间&#xff0c;避免长时间玩游戏手机发烫发热的尴尬&#xff0c;也可以用键盘鼠标对…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

如何通过git命令查看项目连接的仓库地址?

要通过 Git 命令查看项目连接的仓库地址&#xff0c;您可以使用以下几种方法&#xff1a; 1. 查看所有远程仓库地址 使用 git remote -v 命令&#xff0c;它会显示项目中配置的所有远程仓库及其对应的 URL&#xff1a; git remote -v输出示例&#xff1a; origin https://…...

在ubuntu等linux系统上申请https证书

使用 Certbot 自动申请 安装 Certbot Certbot 是 Let’s Encrypt 官方推荐的自动化工具&#xff0c;支持多种操作系统和服务器环境。 在 Ubuntu/Debian 上&#xff1a; sudo apt update sudo apt install certbot申请证书 纯手动方式&#xff08;不自动配置&#xff09;&…...

scan_mode设计原则

scan_mode设计原则 在进行mtp controller设计时&#xff0c;基本功能设计完成后&#xff0c;需要设计scan_mode设计。 1、在进行scan_mode设计时&#xff0c;需要保证mtp处于standby模式&#xff0c;不会有擦写、编程动作。 2、只需要固定mtp datasheet说明的接口即可&#xf…...

边缘计算设备全解析:边缘盒子在各大行业的落地应用场景

随着工业物联网、AI、5G的发展&#xff0c;数据量呈爆炸式增长。但你有没有想过&#xff0c;我们生成的数据&#xff0c;真的都要发回云端处理吗&#xff1f;其实不一定。特别是在一些对响应时间、网络带宽、数据隐私要求高的行业里&#xff0c;边缘计算开始“火”了起来&#…...

rk3506上移植lvgl应用

本文档介绍如何在开发板上运行以及移植LVGL。 1. 移植准备 硬件环境:开发板及其配套屏幕 开发板镜像 主机环境:Ubuntu 22.04.5 2. LVGL启动 ​ 出厂系统默认配置了 LVGL,并且上电之后默认会启动 一个LVGL应用 。 LVGL 的启动脚本为/etc/init.d/pre_init/S00-lv_demo,…...

android关于pthread的使用过程

文章目录 简介代码流程pthread使用hello_test.cppAndroid.bp 编译过程报错处理验证过程 简介 android开发经常需要使用pthread来编写代码实现相关的业务需求 代码流程 pthread使用 需要查询某个linux函数的方法使用&#xff0c;可以使用man 函数名 // $ man pthread_crea…...