当前位置: 首页 > news >正文

1. 机器学习基本知识(3)——机器学习的主要挑战

1.5 机器学习的主要挑战

1.5.1 训练数据不足

  • 对于复杂问题而言,数据比算法更重要
  • 但中小型数据集仍然很普遍,获得额外的训练数据并不总是一件轻而易举或物美价廉的事情,所以暂时不要抛弃算法。

1.5.2 训练数据不具有代表性

  • 采样偏差:如果样本太小,那么会出现采样噪声(即非代表性数据被选中),但如果采样方法有缺陷,即使是非常大的样本也可能不具有代表性。

1.5.3 低质量数据

训练数据充满错误、异常值和噪声(例如,低质量的测量产生的数据),系统将更难检测到底层模式,也就更不太可能表现良好。

需要对数据进行清洗,必须决定是完全忽略此属性、忽略这些实例、将缺失值补充完整(例如,填写年龄的中位数),还是训练一个具有该特征的模型,再训练一个没有该特征的模型。

1.5.4 无关特征

机器学习项目成功的一个关键部分是提取出好的特征集来进行训练。这个过程称为特征工程,包括以下步骤:

  • 特征选择(在现有特征中选择最有用的特征进行训练)。
  • 特征提取(结合现有特征产生更有用的特征,正如我们之前看到的,降维算法可以提供帮助)。
  • 通过收集新数据创建新特征。

1.5.5 过拟合训练数据

  • 过拟合,也就是指该模型在训练数据上表现良好,但泛化效果不佳。
  • 当模型相对于训练数据的数量和噪声过于复杂时,就会发生过拟合。以下是可能的解决方案:
    • 通过选择参数较少的模型(例如,线性模型而不是高阶多项式模型)、减少训练数据中的属性数量或约束模型来简化模型。
    • 收集更多训练数据。
    • 减少训练数据中的噪声(例如,修复数据错误并移除异常值)。
  • 正则化:通过约束模型使它更简单,并降低过拟合风险的过程。

正则化例子:

例如,我们之前定义的线性模型有两个参数:θ0和θ1。

因此,该学习算法有两个自由度来调整模型使其适应训练数据,它可以调整直线的高度(θ0)和斜率(θ1)。

如果我们强制θ=0,该算法只有一个自由度,并且会更难正确地拟合数据:它所能做的就是向上或向下移动线以尽可能接近训练实例,所以它最终会在平均值附近。这确实是一个非常简单的模型!

如果我们允许算法修改θ1,但强制它保持较小的值,那么该学习算法的自由度将在1到2之间。它生成的模型会比有两个自由度的模型更简单,但比只有一个自由度的模型要复杂一些。

你希望在完美拟合训练数据和保持模型足够简单之间找到适当的平衡点,以确保模型能够较好地泛化。

image-20241210162817076

  • 超参数:学习期间应用的正则化程度可以由超参数控制。超参数是学习算法(而非模型)的参数。因此,它不受学习算法本身的影响,必须在训练前设置并在训练期间保持不变。

如果将正则化超参数设置得非常大,你将得到一个几乎平坦的模型(斜率接近于零)。学习算法虽然肯定不会过拟合训练数据,但也不太可能找到好的解决方案。调整超参数是构建机器学习系统的重要部分。

1.5.6 欠拟合训练数据

欠拟合与过拟合正好相反:当模型太简单而无法学习数据的底层结构时,就会发生欠拟合。

例如,生活满意度的线性模型容易出现欠拟合。

因为现实情况总是比模型更复杂,所以它的预测必然是不准确的,即使是在训练样例上也是如此。

以下是解决此问题的主要方式:

  • 选择具有更多参数的更强大的模型。
  • 为学习算法提供更好的特征(特征工程)。
  • 减少对模型的约束(例如通过减少正则化超参数)。

1.5.7 总结💥

  • 机器学习是关于如何让机器更好地完成某些任务的理论,它从数据中学习而无须清晰地编写规则。
  • 机器学习系统有许多类型:有监督和无监督,批量的和在线的,基于实例的和基于模型的。
  • 在机器学习项目中,你从训练集中收集数据,然后将训练集提供给学习算法。
    • 如果该算法是基于模型的,它会调整一些参数以使模型拟合训练集(对训练集本身做出良好的预测),然后希望它也能够对新实例做出良好的预测。
    • 如果该算法是基于实例的,那么它会记住样例,并根据相似性度量将它们与学习过的实例进行比较,从而泛化到新实例。
  • 如果训练集太小,或者数据不具有代表性、有噪声或被不相关的特征(垃圾进、垃圾出)污染,那么系统的表现不会很好。
  • 最后,你的模型既不能太简单(这种情况会导致欠拟合)也不能太复杂(这种情况会导致过拟合)。
  • 一旦训练了一个模型,你就不能只是“希望”它泛化到新实例,你还需要评估它并在必要时对其进行微调。

相关文章:

1. 机器学习基本知识(3)——机器学习的主要挑战

1.5 机器学习的主要挑战 1.5.1 训练数据不足 对于复杂问题而言,数据比算法更重要但中小型数据集仍然很普遍,获得额外的训练数据并不总是一件轻而易举或物美价廉的事情,所以暂时不要抛弃算法。 1.5.2 训练数据不具有代表性 采样偏差&#…...

prometheusgrafana实现监控告警

Prometheus负责集群数据的监控和采集,然后传递给grafana进行可视化,集成睿象云可实现监控报警,为了方便操作,可以通过iframe嵌套grafana到指定的页面。 文章目录 1.Grafana集成Prometheus2.iframe内嵌grafana3.监控告警 1.Grafana…...

Ubuntu防火墙管理(五)——ufw源规则解读与修改

firewalld与nftables 在 /etc/firewalld/firewalld.conf 文件中,FirewallBackend 选项用于指定 Firewalld 使用的防火墙后端实现。具体来说: nftables:这是当前的默认选项,表示 Firewalld 将使用 nftables 作为防火墙后端。nftab…...

Docker如何运行一个python脚本Hello World

Docker如何运行一个python脚本Hello World 1、编写Python的Hello World:script.py #!/usr/bin/python #_*_coding:utf-8_*_ print("Hello World") 2、Dockerfile文件 #拉取Docker环境 FROM python #设置工作目录 WORKDIR /app #将dockerfile同级文件copy到…...

人工智能-自动驾驶领域

目录 引言自动驾驶与人工智能的结合为什么自动驾驶领域适合发表文章博雅智信的自动驾驶辅导服务结语 引言 自动驾驶技术的崛起是当代交通行业的一场革命。通过结合先进的人工智能算法、传感器技术与计算机视觉,自动驾驶不仅推动了技术的进步,也使得未来…...

[ubuntu18.04]ubuntu18.04安装json-c操作说明

ubuntu18.04安装json-c 代码下载 rootw1804-virtual-machine:/home/w1804/tr069# git clone https://github.com/json-c/json-c.git Cloning into /opt/git/json-c... remote: Enumerating objects: 6398, done. remote: Counting objects: 100% (1067/1067), done. remote:…...

华为eNSP:VRRP

一、VRRP背景概述 在现代网络环境中,主机通常通过默认网关进行网络通信。当默认网关出现故障时,网络通信会中断,影响业务连续性和稳定性。为了提高网络的可靠性和冗余性,采用虚拟路由冗余协议(VRRP)是一种…...

Linux--top系统资源命令查看--详解

top命令用法 图: top命令用法: top命令经常用来监控linux的系统状况,是常用的性能分析工具,能够实时显示系统中各个进程的资源占用情况。 top的使用方式: top [-d number] | top [-bnp] top参数解释: -…...

es的join是什么数据类型

在 Elasticsearch 中,parent 并不是一个独立的数据类型,而是与 join 数据类型一起使用的一个概念。join 数据类型用于在同一个索引中建立父子文档之间的关系,允许你在一个索引内表示层级结构或关联关系。通过 join 字段,你可以定义不同类型的文档(如父文档和子文档),并指…...

KV Shifting Attention Enhances Language Modeling

基本信息 📝 原文链接: https://arxiv.org/abs/2411.19574👥 作者: Mingyu Xu, Wei Cheng, Bingning Wang, Weipeng Chen🏷️ 关键词: KV shifting attention, induction heads, language modeling📚 分类: 机器学习, 自然语言处…...

软错误防护技术在车规MCU中应用

在大气层内,宇宙射线粒子与大气分子发生核反应生成大气中子。大气中子入射微电子器件或电路将会诱发单粒子效应(SEE),效应类型主要有单粒子翻转(SEU)、单粒子瞬态(SET)、单粒子锁定&…...

遥感图像处理二(ENVI5.6 Classic)

1 实验目的和内容 1.1 实验目的 本次上机旨在继续深入了解ENVI软件的基本使用,并对提供的实验数据进行基本的图像分割和地物分类等操作并分析结果。 1.2 实验内容 1.2.1 图像分割 对教材示例数据“C7图像分割”中的风景图、兰花图和娃娃图分别进行图像分割操作…...

经典文献阅读之--A Fast Dynamic Point Detection...(用于驾驶场景中的动态点云剔除方法)

0. 简介 现有的基于3D点的动态点检测和移除方法存在显著的时间开销,使其难以适应激光雷达-惯性测程系统。《A Fast Dynamic Point Detection Method for LiDAR-Inertial Odometry in Driving Scenarios》提出了一种基于标签一致性的动态点检测和移除方法&#xff0…...

百度搜索应适用中文域名国家标准,修复中文网址展示BUG

12月1日中文域名国家标准正式实施。该标准“明确了中文域名在编码、解析、注册、字表等方面的技术要求,适用于中文域名注册管理机构、注册服务机构、网络软硬件服务商及终端用户”。 00:23 显然,百度作为网络软硬件服务商,是包括在国家标准的…...

设计模式学习之——适配器模式

适配器模式(Adapter Pattern),又称作变压器模式(因为这两者都体现了“转换”或“适配”的核心概念),是一种结构型设计模式。它将一个类的接口转换成客户端所期望的另一种接口,从而使得原本因接口…...

服务器数据恢复—热备盘上线过程中硬盘离线导致raid5阵列崩溃的数据恢复案例

服务器数据恢复环境: 两组分别由4块SAS接口硬盘组建的raid5阵列,两组raid5阵列划分LUN并由LVM管理,格式化为EXT3文件系统。 服务器故障: RAID5阵列中一块硬盘未知原因离线,热备盘自动激活上线替换离线硬盘。在热备盘上…...

MetaGPT源码 (Memory 类)

目录 MetaGPT源码:Memory 类例子 MetaGPT源码:Memory 类 这段代码定义了一个名为 Memory 的类,用于存储和管理消息(Message)对象。Memory 提供了多种操作消息的功能,包括添加单条或批量消息、按角色或内容筛选消息、删除最新消息…...

数据结构与算法复习AVL树插入过程

环境 $ cat /proc/version Linux version 6.8.0-45-generic (builddlcy02-amd64-115) (x86_64-linux-gnu-gcc-13 (Ubuntu 13.2.0-23ubuntu4) 13.2.0, GNU ld (GNU Binutils for Ubuntu) 2.42) #45-Ubuntu SMP PREEMPT_DYNAMIC Fri Aug 30 12:02:04 UTC 2024 #include <std…...

小迪笔记第 五十天 文件包含漏洞 远程包含 本地包含 ctf练习题实战

前言 文件包含漏洞 原理就是包含的文件如果可控就会造成这个漏洞 php文件包含的特征 &#xff1a; PHP&#xff1a;include、require、include_once、require_once等 一共是分为了2 种 一个就是 远程文件包含 这个的前提是php开启了 远程文件上传这个选项 原理应用就是…...

单片机:实现点阵汉字平滑滚动显示(附带源码)

单片机实现点阵汉字平滑滚动显示 点阵显示技术是嵌入式系统中的常见显示技术之一&#xff0c;广泛应用于LED矩阵显示屏、广告牌、电子时钟等设备。在本项目中&#xff0c;我们将实现一个基于单片机的点阵汉字平滑滚动显示系统&#xff0c;使用LED点阵显示屏来实现动态滚动的汉…...

C# 实现 10 位纯数字随机数

本文将介绍如何用 C# 实现一个生成 10 位纯数字随机数的功能。以下是完整的代码示例&#xff1a; using System; using System.Collections.Generic; using System.Linq; using System.Text;namespace RandomTset {class Program{// 使用GUID作为种子来创建随机数生成器static…...

分布式全文检索引擎ElasticSearch-基本概念介绍

一、索引类型 索引&#xff0c;可以理解是我们的目录&#xff0c;看一本书的时候&#xff0c;可以根据目录准确快速定位到某一页&#xff0c;那么索引就可以帮我们快速定位到某条数据在庞大的数据表的哪一个位置。 我们常见的索引包括正排索引和倒排索引 1、正排索引 正排索…...

电子应用设计方案-49:智能拖把系统方案设计

智能拖把系统方案设计 一、引言 随着人们生活水平的提高和对清洁效率的追求&#xff0c;智能拖把作为一种创新的清洁工具应运而生。本方案旨在设计一款功能强大、操作便捷、清洁效果出色的智能拖把系统。 二、系统概述 1. 系统目标 - 实现自动清洁地面&#xff0c;减轻用户劳…...

汽车免拆诊断案例 | 2014款保时捷卡宴车发动机偶尔无法起动

故障现象 一辆2014款保时捷卡宴车&#xff0c;搭载3.0T 发动机&#xff0c;累计行驶里程约为18万km。车主反映&#xff0c;发动机偶尔无法起动。 故障诊断 接车后试车&#xff0c;发动机起动及运转均正常。用故障检测仪检测&#xff0c;发动机控制单元&#xff08;DME&#x…...

电脑怎么设置通电自动开机(工控机)

操作系统&#xff1a;win10 第一步&#xff0c;电脑开机时按del键进入bios页面。 第二步&#xff0c;选择advanced下的IT8712 Super IO Configuration 第三步&#xff0c;找到Auto Power On&#xff0c;将其从Power off设置为Power On 第四步&#xff0c;F10保存&#xff0c;大…...

MaxKB进阶:豆包大模型驱动的智能日报小助手

MaxKB进阶&#xff1a;豆包大模型驱动的智能日报小助手 说明&#xff1a; 在本教程中&#xff0c;我们通过“智能日报小助手”的应用场景&#xff0c;全面解析MaxKB的进阶功能&#xff1a;从如何接入公共大模型&#xff08;以豆包为例&#xff09;&#xff0c;到函数功能的灵活…...

Python爬虫之使用xpath进行HTML Document文档的解析

响应有两种&#xff1a;JSON数据和HTML页面&#xff0c;对于后者就需要进行解析HTML Documen得到我们需要的信息。 ① xpath使用 可以提前安装xpath插件&#xff0c;也可以自己从HTML源码解析。 &#xff08;1&#xff09;打开chrome浏览器 &#xff08;2&#xff09;点击右…...

调度系统:使用 Airflow 对 Couchbase 执行 SQL 调度时的潜在问题

使用 Airflow 对 Couchbase 执行 SQL 调度时&#xff0c;通常情况下不会直接遇到与 Couchbase 分布式特性相关的异常&#xff0c;但在某些特定情境下&#xff0c;可能会出现一些与分布式环境、调度和数据一致性相关的潜在问题。以下是一些可能会遇到的问题和建议的解决方案&…...

【数据结构——查找】二分查找(头歌实践教学平台习题)【合集】

目录&#x1f60b; 任务描述 相关知识 测试说明 我的通关代码: 测试结果&#xff1a; 任务描述 本关任务&#xff1a;实现二分查找的算法。 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a;1.根据键盘输入的一组有序数据建立顺序表&#xff0c;2.顺序表的输…...

简单网页制作提升用户体验和客户转化

在当今竞争激烈的市场中&#xff0c;用户体验和客户转化率往往是决定企业成败的关键。简单而高效的网页制作&#xff0c;正是提升用户体验和客户转化的重要手段之一。 首先&#xff0c;简洁的网页设计能够有效减轻用户的认知负担。当用户打开一个层次分明、界面整洁的网站时&am…...

怎样把自己做的网页放在网站里/如何让网站被百度收录

文章目录一、内存的基础知识1.1 什么是内存1.2 进程的运行原理1.2.1 指令1.2.2 逻辑地址和物理地址1.2.3 从写程序到程序运行1.2.4 装入模块装入内存1.3 三种装入方式1.3.1 绝对装入1.3.2 静态重定位1.3.3 动态重定位1.4 链接的三种方式1.5 总结二、内存管理的概念2.1 内存空间…...

wordpress播放m3u8/站长之家最新网站

1、Advanced Installer 2、Setup Factory 3、Smart Install Maker 企业应用的推荐&#xff1a; Nullsoft、InstallShield&#xff0c;Advanced Installer...

网站跳出率/app推广是做什么的

SNV下载历史版本的某个文件 目的&#xff1a;从SVN上下载历史版本&#xff0c;不是整个工程的某个历史版本&#xff0c;而是某个文件的历史版本。 首先找到想要下载的文件右键Show log&#xff0c;找到想要的某个版本点击右键选择save resivion to 这样就保存了想要的&#…...

网站qq统计/河北百度推广电话

本文实例讲述了Python3使用requests模块实现显示下载进度的方法。分享给大家供大家参考&#xff0c;具体如下&#xff1a;一、配置request1. 相关资料请求关键参数&#xff1a;streamTrue。默认情况下&#xff0c;当你进行网络请求后&#xff0c;响应体会立即被下载。你可以通过…...

邯郸做网站的地方/潍坊住房公积金管理中心

这几天使用dropna,又出现了错误&#xff0c;就再次记录一下&#xff1a; 准确的说&#xff0c;dropna中的subset接受的值必须是array 顺便说一下&#xff0c;drop_duplicates(subset"")&#xff0c;接受的值可以是string&#xff0c;或者sequnence。也就是说&#…...

平面设计培训学校一年学费/关键词优化搜索引擎

通过创建表方式和 数据向导方式都可以成功创建数据 文件&#xff0c;操作员可以随意选择自己习惯的方式。总之&#xff0c;能坚守数据文件放数据的原则&#xff0c;就不会出问题了。当回到“ 参数属性 页面”中后&#xff0c;发现数据已经准备好了&#xff0c;而且原来灰色的区…...