当前位置: 首页 > news >正文

人脸识别Adaface之libpytorch部署

目录

  • 1. libpytorch下载
  • 2. Adaface模型下载
  • 3. 模型转换
  • 4. c++推理
    • 4.1 前处理
    • 4.2 推理
    • 4.3 编译运行
      • 4.3.1 写CMakeLists.txt
      • 4.3.2 编译
      • 4.3.3 运行

1. libpytorch下载

参考:
https://blog.csdn.net/liang_baikai/article/details/127849577
下载完成后,将其解压到/usr/local下

2. Adaface模型下载

https://github.com/mk-minchul/AdaFace?tab=readme-ov-file
在这里插入图片描述
WebFace4M模型准确率最高,R50 WebFace4M和R100 WebFace12M的准确率十分接近,但耗时却低了不少,所以建议使用R50 WebFace4M

3. 模型转换

下载Adaface源码,并将下面代码放到其目录下执行即可

model_trans.py

import torch
import torch.nn as nn
from head import AdaFace 
import net
import onnxruntime as ort
import numpy as np
import onnx# 加载模型
adaface_models = {
#    'ir_101':"./adaface_ir101_ms1mv2.ckpt",'ir_50':"./adaface_ir50_webface4m.ckpt",
}
architecture = 'ir_50'model = net.build_model(architecture)
#model = AdaFace()
statedict = torch.load(adaface_models[architecture],map_location=torch.device('cpu'),weights_only=True)['state_dict']
model_statedict = {key[6:]:val for key, val in statedict.items() if key.startswith('model.')}model.load_state_dict(model_statedict, strict=True)for p in model.parameters():p.requires_grad = Falsemodel.eval()
device = torch.device("cpu");
model_cpu = model.to(device)# 创建一个示例输入
example_input = torch.rand(1, 3, 112, 112)  # 假设输入大小为 (1, 3, 112, 112)# 转换为 TorchScript
traced_model = torch.jit.trace(model_cpu, example_input)# 保存模型
traced_model.save('adaface.pt')# 导出为 ONNX 格式
#onnx_file_path = 'adaface.onnx'  # 输出文件名
#torch.onnx.export(model, example_input, onnx_file_path,
#                  export_params=True)#opset_version=11,  # ONNX 版本#do_constant_folding=True,  # 是否进行常量折叠#input_names=['input'],  # 输入名称#output_names=['output'],  # 输出名称#dynamic_axes={'input': {0: 'batch_size'},  # 动态 batch size#              'output': {0: 'batch_size'}})

4. c++推理

4.1 前处理

  • resize人脸图片为112x112
  • 归一化
  • BGR->RGB
  • 转换为tensor
  • N H W C->N C H W
  • reshape 1,3,112,112(模型输入shape)

4.2 推理

  • load model
  • 读取图片
  • 人脸检测对齐
  • 前处理
  • model.forward推理
#include <torch/script.h>
#include <iostream>
#include <memory>
#include <opencv2/opencv.hpp>torch::Tensor to_input(const cv::Mat& pil_rgb_image) {cv::Mat brg_img;cv::resize(pil_rgb_image, brg_img, cv::Size(112, 112));brg_img.convertTo(brg_img, CV_32FC3, 1.0 / 255.0);brg_img = (brg_img - 0.5) / 0.5;cv::cvtColor(brg_img, brg_img, cv::COLOR_BGR2RGB);torch::Tensor tensor = torch::from_blob(brg_img.data, {1, brg_img.rows, brg_img.cols, 3}, torch::kFloat32);tensor = tensor.permute({0, 3, 1, 2});tensor = tensor.reshape({1, 3, 112, 112});tensor = tensor.to(at::kCPU);return tensor;
}int main() {// 模型加载torch::jit::script::Module model;try {model = torch::jit::load("./adaface.pt");//model.eval();model.to(at::kCPU);} catch (const c10::Error& e) {std::cerr << "Error loading the model\n";return -1;}// 读取图片std::vector<std::string> images;getAllFiles("./images", images, {"jpg", "jpeg", "png"});// 人脸检测器初始化OpenCVFace open_cv_face;open_cv_face.Init("./models/face_detection_yunet_2023mar.onnx","./models/face_recognition_sface_2021dec.onnx", 0.9, 0.5);for (const auto &image_path : images){// Load an image using OpenCVcv::Mat orig_img = cv::imread(image_path);if (orig_img.empty()) {std::cerr << "Could not read the image\n";return -1;}auto detect_start = GetCurTimestamp();std::vector<cv::Mat> aligned_faces;// 人脸检测对齐open_cv_face.detectAndAlign(orig_img, aligned_faces);//std::cout<<"detect use time is  "<< (GetCurTimestamp() - detect_start)<<std::endl;for (const auto &face:aligned_faces){cv::Mat img(face);auto img_tensor = to_input(img);// Inference 推理std::vector<torch::jit::IValue> inputs;inputs.push_back(img_tensor);auto output = model.forward(inputs);// Check if the output is a tupleif (output.isTuple()) {auto output_tuple = output.toTuple();if (output_tuple->elements().size() > 0) {at::Tensor output_tensor = output_tuple->elements()[0].toTensor();//std::cout << output_tensor << std::endl;} else {std::cerr << "Output tuple is empty\n";return -1;}} else {at::Tensor output_tensor = output.toTensor();//std::cout << output_tensor << std::endl;}}}return 0;
}

注意:本代码的人脸检测和对齐使用opencv的Yunet和SFace实现, 地址

4.3 编译运行

4.3.1 写CMakeLists.txt

本工程依赖opencv和libtorch,一并下载解压到/usr/local下即可。

cmake_minimum_required(VERSION 3.22.1)
project(adaface-demo)set(QMAKE_CXXFLAGS "-std=c++17")
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)include_directories(/usr/local/include)
link_directories(/usr/local/lib)set(OPENCV_VERSION "4.9.0")
set(OPENCV_INSTALLATION_PATH "/usr/local/opencv4" CACHE PATH "Where to look for OpenCV installation")# Find OpenCV
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})if (AARCH64)set(Torch_DIR /usr/local/libtorch/lib/python3.10/site-packages/torch/share/cmake/Torch)
else ()set(Torch_DIR /usr/local/libtorch/share/cmake/Torch)
endif ()find_package(Torch REQUIRED)
include_directories(${TORCH_INCLUDE_DIRS})AUX_SOURCE_DIRECTORY(./src DIR_SRCS)
add_executable(adaface-demo ${DIR_SRCS})target_link_libraries(adaface-demo ${OpenCV_LIBS} ${TORCH_LIBRARIES})

4.3.2 编译

mkdir build
cd build
cmake ..

4.3.3 运行

将模型文件adaface.py拷贝到bin目录下

cd ../bin
./main

相关文章:

人脸识别Adaface之libpytorch部署

目录 1. libpytorch下载2. Adaface模型下载3. 模型转换4. c推理4.1 前处理4.2 推理4.3 编译运行4.3.1 写CMakeLists.txt4.3.2 编译4.3.3 运行 1. libpytorch下载 参考&#xff1a; https://blog.csdn.net/liang_baikai/article/details/127849577 下载完成后&#xff0c;将其解…...

vue3+echarts+websocket分时图与K线图实时推送

一、父组件代码&#xff1a; <template> <div class"chart-box" v-loading"loading"> <!-- tab导航栏 --> <div class"tab-box"> <div class"tab-list"> <div v-for"(item, index) in tabList…...

小程序开发实战项目:构建简易待办事项列表

随着移动互联网的飞速发展&#xff0c;小程序以其便捷性、即用即走的特点&#xff0c;成为了连接用户与服务的重要桥梁。无论是电商平台的购物助手&#xff0c;还是餐饮行业的点餐系统&#xff0c;小程序都在各个领域发挥着巨大的作用。 小程序开发基础 1. 小程序简介 小程序是…...

SD Express 卡漏洞导致笔记本电脑和游戏机遭受内存攻击

Positive Technologies 最近发布的一份报告揭示了一个名为 DaMAgeCard 的新漏洞&#xff0c;攻击者可以利用该漏洞利用 SD Express 内存卡直接访问系统内存。 该漏洞利用了 SD Express 中引入的直接内存访问 (DMA) 功能来加速数据传输速度&#xff0c;但也为对支持该标准的设备…...

前端node环境安装:nvm安装详细教程(安装nvm、node、npm、cnpm、yarn及环境变量配置)

需求&#xff1a;在做前端开发的时候&#xff0c;有的时候 这个项目需要 node 14 那个项目需要 node 16&#xff0c;我们也不能卸载 安装 。这岂不是很麻烦。这个时候 就需要 一个工具 来管理我们的 node 版本和 npm 版本。 下面就分享一个 nvm 工具 用来管理 node 版本。 这个…...

java之集合(详细-Map,Set,List)

1集合体系概述 1.1集合的概念 集合是一种容器&#xff0c;用来装数据的&#xff0c;类似于数组&#xff0c;但集合的大小可变&#xff0c;开发中也非常常用。 1.2集合分类 集合分为单列集合和多列集合 Collection代表单列集合&#xff0c;每个元素&#xff08;数据&#xff…...

常见LeetCode-Saw200

用来记录需要知道见过的题型&#xff1a; LeetCode2-两数相加 说明&#xff1a;以链表的形势给了你每个位的数字&#xff0c;而且是逆序&#xff0c;直接从开头&#xff08;个位&#xff09;遍历相加。带上进位即可。有一个为空就直接计算另一个和进位。 LeetCode-3.无重复字符…...

Unity 制作一个视频播放器(打包后,可在外部编辑并放置新的视频)

效果展示&#xff1a; 在这里&#xff0c;我把视频名称&#xff08;Json&#xff09;和对应的视频资源都放在了StreamingAssets文件夹下&#xff0c;以便于打包后&#xff0c;客户还可以自己在外部增加、删除、修改对应的视频资料。 如有需要&#xff0c;请联细抠抠。...

MySQL-SQL语句

文章目录 一. SQL语句介绍二. SQL语句分类1. 数据定义语言&#xff1a;简称DDL(Data Definition Language)2. 数据操作语言&#xff1a;简称DML(Data Manipulation Language)3. 数据查询语言&#xff1a;简称DQL(Data Query Language)4. 数据控制语言&#xff1a;简称DCL(Data …...

腾讯微信大数据面试题及参考答案

DNS 协议是否使用 UDP? DNS(Domain Name System)协议主要使用 UDP(User Datagram Protocol),但也会使用 TCP(Transmission Control Protocol)。 UDP 是一种无连接的传输协议,它的特点是简单、高效。DNS 在进行域名解析时,大部分情况下使用 UDP。因为 UDP 的开销小,对…...

Python跳动的爱心

系列文章 序号直达链接表白系列1Python制作一个无法拒绝的表白界面2Python满屏飘字表白代码3Python无限弹窗满屏表白代码4Python李峋同款可写字版跳动的爱心5Python流星雨代码6Python漂浮爱心代码7Python爱心光波代码8Python普通的玫瑰花代码9Python炫酷的玫瑰花代码10Python多…...

计算机启动过程 | Linux 启动流程

注&#xff1a;本文为“计算机启动、 Linux 启动”相关文章合辑。 替换引文部分不清晰的图。 探索计算机的启动过程 Aleksandr Goncharov 2023/04/21 很多人对计算机的启动方式很感兴趣。只要设备开启&#xff0c;这就是魔法开始和持续的地方。在本文中&#xff0c;我们将概…...

反射简单介绍

反射就是从类里拿东西 有的人可能会想为什么不能用io流&#xff0c;从上往下一行一行的读也能获取类中的信息&#xff0c;为什么要用反射呢&#xff1f; 假如我们io流&#xff0c;从左到右一行一行的读取数据&#xff0c;如果碰到局部变量和成员变量同名&#xff0c;怎么区分&a…...

工具篇--GitHub Desktop 使用

文章目录 前言一、GitHub Desktop 的使用&#xff1a;1.1 通过官网下载GitHub Desktop和安装&#xff1a;1.2 安装和使用&#xff1a;1.2.1 填充自己的标识&#xff1a;1.2.3 克隆项目&#xff1a;1.2.4 git 常用忽略项配置&#xff1a; 二、代码的更新和提交&#xff1a;2.1 代…...

单臂路由配置

知识点 单臂路由指在路由器上的一个接口配置子接口&#xff08;逻辑接口&#xff09;来实现不同vlan间通信 路由器上的每个物理接口都可以配置多个子接口&#xff08;逻辑接口&#xff09; 公司的财务部、技术部和业务部有多台计算机&#xff0c;它们使用一台二层交换机进行互…...

河工oj第七周补题题解2024

A.GO LecturesⅠ—— Victory GO LecturesⅠ—— Victory - 问题 - 软件学院OJ 代码 统计 #include<bits/stdc.h> using namespace std;double b, w;int main() {for(int i 1; i < 19; i ) {for(int j 1; j < 19; j ) {char ch; cin >> ch;if(ch B) b …...

卷积的数学原理与作用

一、一维卷积 &#xff08;一&#xff09;定义 数学定义 给定一个输入序列 x [ x 1 , x 2 , ⋯ , x n ] x [x_1,x_2,\cdots,x_n] x[x1​,x2​,⋯,xn​] 和一个卷积核&#xff08;滤波器&#xff09; k [ k 1 , k 2 , ⋯ , k m ] k [k_1,k_2,\cdots,k_m] k[k1​,k2​,⋯,…...

路由介绍.

RIB和FIB Routing Information Base&#xff08;RIB&#xff09;&#xff0c;即路由信息库&#xff0c;是存储在路由器或联网计算机中的一个电子表格或类数据库&#xff0c;它保存着指向特定网络地址的路径信息&#xff0c;包括路径的路由度量值。RIB的主要目标是实现路由协议…...

CTFshow-命令执行(Web29-40)

CTFshow-命令执行(Web29-40) CTFWeb-命令执行漏洞过滤的绕过姿势_绕过空格过滤-CSDN博客 总结rce&#xff08;远程代码执行各种sao姿势&#xff09;绕过bypass_远程命令执行绕过-CSDN博客 对比两者的源代码&#xff0c;我们发现&#xff0c;cat指令把flag.php的内容导出后依…...

MySQL锁的类型有哪些

目录 共享锁(share lock)&#xff1a; 排他锁(exclusivelock)&#xff1a; 表锁(table lock)&#xff1a; 行锁&#xff1a; 记录锁(Record lock)&#xff1a; 页锁&#xff1a; 间隙锁&#xff1a; 基于锁的属性分类&#xff1a;共享锁&#xff0c;排他锁。 基于锁的粒…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...

Linux安全加固:从攻防视角构建系统免疫

Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日&#xff0c;嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》&#xff0c;海云安高敏捷信创白盒&#xff08;SCAP&#xff09;成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天&#xff0c;网络安全已成为企业生存与发展的核心基石&#xff0c;为了解…...

【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法

使用 ROS1-Noetic 和 mavros v1.20.1&#xff0c; 携带经纬度海拔的话题主要有三个&#xff1a; /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码&#xff0c;来分析他们的发布过程。发现前两个话题都对应了同一…...