当前位置: 首页 > news >正文

《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》

《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》

  • 一、修改源码加上如下两条代码
  • 二、源码修改如下
  • 三、Keras3 minist 训练22秒结束,训练过程截图
  • 四、Keras3 minist 源码截图

一、修改源码加上如下两条代码

import os
os.environ["KERAS_BACKEND"] = "torch"

二、源码修改如下

import os
os.environ["KERAS_BACKEND"] = "torch"import numpy as np
import keras
from keras import layers
from keras.utils import to_categorical# Model / data parameters
num_classes = 10
input_shape = (28, 28, 1)# Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")# convert class vectors to binary class matrices
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)batch_size = 128
epochs = 3model = keras.Sequential([layers.Input(shape=input_shape),layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),layers.MaxPooling2D(pool_size=(2, 2)),layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),layers.MaxPooling2D(pool_size=(2, 2)),layers.Flatten(),layers.Dropout(0.5),layers.Dense(num_classes, activation="softmax"),]
)model.summary()model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]
)model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1
)score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])

三、Keras3 minist 训练22秒结束,训练过程截图

Keras3 minist

四、Keras3 minist 源码截图

在这里插入图片描述

相关文章:

《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》

《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》 一、修改源码加上如下两条代码二、源码修改如下三、Keras3 minist 训练22秒结束,训练过程截图四、Keras3 minist 源码截图 一、修改源码加上如下两条代码 import os os.environ["KERAS_BAC…...

【.net core】【sqlsugar】大数据写入配置(需要版本5.0.45)

官网连接 https://www.donet5.com/home/Doc?typeId2404 泛型方法 /// <summary> /// 大数据写入&#xff08;泛型方法&#xff09; /// </summary> /// <param name"entitys"></param> /// <returns></returns> ///代码中_d…...

ansible运维实战

通过学习ansible自动化运维&#xff0c;初步对ansible有了一定的了解&#xff0c;此次分享两个案例&#xff0c;希望对大家有所帮助 案例一&#xff1a;自动化安装nginx 本次案例目的是ansible自动化安装nginx并配置 首先创建如图所示目录 在主机上安装好nginx&#xff0c;如…...

DDOS分布式拒绝服务攻击

DDOS分布式拒绝服务攻击 简单来说 传统的DOS就是一台或者多台服务对一个受害目标&#xff08;服务器&#xff0c;路由&#xff0c;ip&#xff0c;国家&#xff09;进行攻击&#xff0c;当范围过大时就是DDOS。目的就是通过大规模的网络流量使得正常流量不能访问受害目标&…...

如何使用 Python 实现 UDP 通信?

1. UDP通信基础 UDP&#xff08;用户数据报协议&#xff09;是一种无连接的传输层协议&#xff0c;它提供了一种不可靠的数据传输服务&#xff0c;但具有较低的延迟和较小的开销。在Python中&#xff0c;可以使用socket模块来实现UDP通信。 2. 实现UDP服务端 import socketd…...

MTK 配置文件梳理

文章目录 MTK 日常配置总结屏幕默认横竖屏显示ro.build.characteristics 属性修改修改点一&#xff1a;build\core\product_config.mk修改点二&#xff1a;build\make\core\main.mk修改是否成功&#xff0c;adb 验证 配置部分系统app handheld_product.mk配置系统属性、第三方应…...

论文笔记:Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See

2024 10月的arxiv 1 主要idea 针对多模态大模型&#xff08;如LLaVA&#xff09;&#xff0c;提出了一系列高效的剪枝策略 在显著降低计算开销&#xff08;多达 88%&#xff09;的同时&#xff0c;保持了模型在多模态任务中的性能表现 2 目前的问题 与文本 token 相比&…...

软考高级架构 —— 10.6 大型网站系统架构演化实例 + 软件架构维护

10.6 大型网站系统架构演化实例 大型网站的技术挑战主要来自于庞大的用户&#xff0c;高并发的访问和海量的数据&#xff0c;主要解决这类问题。 1. 单体架构 特点: 所有资源&#xff08;应用程序、数据库、文件&#xff09;集中在一台服务器上。适用场景: 小型网站&am…...

2024美赛数学建模C题:网球比赛中的动量,用马尔可夫链求解!详细分析

文末获取历年美赛数学建模论文&#xff0c;交流思路模型 接下来讲解马尔可夫链在2024年C题中的运用 1. 马尔科夫链的基本原理 马尔科夫链是描述随机过程的一种数学模型&#xff0c;其核心特征是无记忆性。 简单来说&#xff0c;系统在某一时刻的状态只取决于当前状态&#x…...

23种设计模式之状态模式

目录 1. 简介2. 代码2.1 State &#xff08;定义抽象状态接口&#xff09;2.2 StartState &#xff08;实现具体状态类&#xff09;2.3 EndState &#xff08;实现具体状态类&#xff09;2.4 Context &#xff08;定义上下文类&#xff09;2.5 Test &#xff08;测试类&#xf…...

Elasticsearch Serverless 中的数据流自动分片

作者&#xff1a;来自 Elastic Andrei Dan 在 Elastic Cloud Serverless 中&#xff0c;我们根据索引负载自动为数据流配置最佳分片数量&#xff0c;从而使用户无需摆弄分片。 传统上&#xff0c;用户会更改数据流的分片配置&#xff0c;以处理各种工作负载并充分利用可用资源。…...

YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块+GSConv卷积,助力小目标

理论介绍 完成本篇需要参考以下两篇文章,并已添加到YOLOv10代码中 YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块,助力小目标检测YOLOv10改进,YOLOv10添加GSConv卷积+Slim-neck,助力小目标检测,二次创新C2f结构下文都是手把手教程,跟着操作即可添加成功 目…...

xshell连接虚拟机,更换网络模式:NAT->桥接模式

NAT模式&#xff1a;虚拟机通过宿主机的网络访问外网。优点在于不需要手动配置IP地址和子网掩码&#xff0c;只要宿主机能够访问网络&#xff0c;虚拟机也能够访问。对外部网络而言&#xff0c;它看到的是宿主机的IP地址&#xff0c;而不是虚拟机的IP。但是&#xff0c;宿主机可…...

sql的where条件中使用case when

场景&#xff1a; 1、使用oracle数据库&#xff0c;数据类型为number&#xff0c;需要正无穷值。 2、数据表中有两个金额值&#xff0c;最大值和最小值&#xff0c; 如10~20&#xff0c; 30 ~40&#xff0c;40以上&#xff0c;数据库中这样设计 id name min max 1 j 10 20 2 …...

MacOS 上以源码形式安装 MySQL 5.7

以下是在 macOS 上从源码安装 MySQL 5.7 的步骤&#xff1a; 前置条件 安装 Homebrew&#xff1a;如果你还没有安装 Homebrew&#xff0c;可以在终端中运行以下命令进行安装&#xff1a; /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install…...

MySQL 事务隔离级别详解

一、事务的基本概念 &#xff08;一&#xff09;什么是事务 事务是一个逻辑工作单元&#xff0c;由一组数据库操作组成。这些操作要么全部成功执行&#xff0c;要么全部回滚&#xff0c;以确保数据库的一致性。事务具有以下四个特性&#xff0c;通常被称为 ACID 特性&#xff…...

C语言——高精度问题

1、高精度计算的本质&#xff1a;竖式计算&#xff1b; 2、适用解决超出long long int 范围的大整数计算 #include<stdio.h> #include<string.h> #define N 100 char str1[N4]{0},str2[N4]{0}; int arr1[N4]{0},arr2[N4]{0}; int ans[N5]{0};//将字符串转化成整型…...

aippt:AI 智能生成 PPT 的开源项目

aippt&#xff1a;AI 智能生成 PPT 的开源项目 在现代办公和学习中&#xff0c;PPT&#xff08;PowerPoint Presentation&#xff09;是一种非常重要的展示工具。然而&#xff0c;制作一份高质量的PPT往往需要花费大量的时间和精力。为了解决这一问题&#xff0c;aippt项目应运…...

【Qt之·类QSettings·参数保存】

系列文章目录 文章目录 前言一、概述1.1 QSetting是什么1.2 为什么学习QSetting是重要的 二、不同存储位置的优缺点三、 QSetting的高级用法四、实例演示总结 前言 在当今的应用程序开发中&#xff0c;设置管理是一个至关重要的方面。应用程序的设置包括用户偏好、配置选项和其…...

location重定向和nginx代理

文章目录 1 location重定向1.1 概述1.2 rewrite跳转1.3 用例1.4 实验1.4.1 基于域名的跳转1.4.2 基于ip的跳转1.4.3 基于后缀名的跳转 2 nginx的代理2.1 nginx内置变量2.2 正向代理2.2.1 固定正向代理2.2.2 自动代理 2.3 反向代理2.3.1 负载均衡的算法2.3.2 负载均衡的特点2.3.…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...